SEARCH

SEARCH BY CITATION

References

  • Adams, H.P. and Koziol, J.A. 1995. Prediction of binding to MHC class I molecules. J. Immunol Methods 185: 181190.
  • Altuvia, Y., Schueler, O., and Margalit, H. 1995. Ranking potential binding peptides to MHC molecules by a computational threading approach. J. Mol. Biol. 249: 244250.
  • Bairoch, A. and Apweiler, R. 2000. The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000. Nucleic Acids Res. 28: 4548.
  • Baldi, P. and Brunak, S. 2001. Bioinformatics. The machine learning approach, 2nd ed. The MIT Press, Cambridge, MA.
  • Benson, D.A., Karsch-Mizrachi, I., Lipman, D.J., Ostell, J., Rapp, B.A., and Wheeler, D.L. 2002. GenBank. Nucleic Acids Res. 30: 1720.
  • Brusic, V., Rudy, G., and Harrison, L.C. 1994. Prediction of MHC binding peptides using artificial neural networks. In Complex systems: Mechanism of adaptation. 10S (eds. R.J.Stonier and X.S.X.S), pp. 253260. IOS Press, Amsterdam.
  • Buus, S., Stryhn, A., Winther, K., Kirkby, N., and Pedersen, L.O. 1995. Receptor–ligand interactions measured by an improved spun column chromatography technique. A high efficiency and high throughput size separation method. Biochim Biophys Acta 1243: 453460.
  • Cooper, S., Erickson, A.L., Adams, E.J., Kansopon, J., Weiner, A.J., Chien, D.Y., Houghton, M., Parham, P., and Walker, C.M. 1999. Analysis of a successful immune response against hepatitis C virus. Immunity 10: 439449.
  • Eddy, S.R. 1998. Profile hidden Markov models. Bioinformatics 14: 755763.
  • Eddy, S.R. 2001. HMMER: Profile hidden Markov models for biological sequence analysis. http://hmmer.wustl.edu/.
  • Falk, K., Rötzschke, O., Stevanovic, S., Jung, G., and Rammensee, H.G. 1991. Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules. Nature 351: 290296.
  • Gorodkin, J., Lund, O., Andersen, C.A., and Brunak, S. 1999. Using sequence motifs for enhanced neural network prediction of protein distance constraints. Proc. Int. Conf. Intell. Syst. Mol. Biol. 95105.
  • Gulukota, K., Sidney, J., Sette, A., and DeLisi, C. 1997. Two complementary methods for predicting peptides binding major histocompatibility complex molecules. J. Mol. Biol. 267: 12581267.
  • Henikoff, S. and Henikoff, J.G. 1992. Amino acid substitution matrices from protein blocks. Proc. Natl. Acad. Sci. 89: 1091510919.
  • Lauemøller, S.L., Holm, A., Hilden, J., Brunak, S., Holst Nissen, M., Stryhn, A., Østergaard Pedersen, L., and Buus, S. 2001. Quantitative predictions of peptide binding to MHC class I molecules using specificity matrices and anchor-stratified calibrations. Tissue Antigens 57: 405414.
  • Mamitsuka, H. 1998. Predicting peptides that bind to MHC molecules using supervised learning of hidden Markov models. Proteins 33: 460474.
  • Meister, G.E., Roberts, C.G., Berzofsky, J.A., and De Groot, A.S. 1995. Two novel T cell epitope prediction algorithms based on MHC-binding motifs; comparison of predicted and published epitopes from Mycobacterium tuberculosis and HIV protein sequences. Vaccine 13: 581591.
  • Pamer, E.G., Davis, C.E., and So, M. 1991. Expression and deletion analysis of the Trypanosoma brucei rhodesiense cysteine protease in Escherichia coli. Infect. Immun. 59: 10741078.
  • Parker, K.C., Bednarek, M.A., and Coligan, J.E. 1994. Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side-chains. J. Immunol. 152: 163175.
  • Press, W.H., Flannery, B.P., Teukolsky, S.A., and Vetterling, W.T. 1989. Numerical recipes. Cambridge University Press.
  • Rammensee, H.G., Friede, T., and Stevanoviic, S. 1995. MHC ligands and peptide motifs: First listing. Immunogenetics 41: 178228.
  • Rammensee, H.G., Bachmann, J., Emmerich, N.P., Bachor, O.A., and Stevanovic, S. 1999. SYFPEITHI: Database for MHC ligands and peptide motifs. Immunogenetics 50: 213219.
  • Rothbard, J.B. and Taylor, W.R. 1988. A sequence pattern common to T cell epitopes. EMBO J. 7: 93100.
  • Rötzschke, O., Falk, K., Stevanovic, S., Jung, G., Walden, P., and Rammensee, H.G. 1991. Exact prediction of a natural T cell epitope. Eur. J. Immunol. 21: 28912894.
  • Savoie, C.J., Kamikawaji, N., Sasazuki, T., and Kuhara, S. 1999. Use of BONSAI decision trees for the identification of potential MHC class I peptide epitope motifs. Pac. Symp. Biocomput. 182189.
  • Schafer, J.R., Jesdale, B.M., George, J.A., Kouttab, N.M., and De Groot, A.S. 1998. Prediction of well-conserved HIV-1 ligands using a matrix-based algorithm, EpiMatrix. Vaccine 16: 18801884.
  • Schirle, M., Weinschenk, T., and Stevanovic, S. 2001. Combining computer algorithms with experimental approaches permits the rapid and accurate identification of T cell epitopes from defined antigens. J. Immunol. Methods 257: 116.
  • Sette, A. and Sidney, J. 1999. The nine major HLA class I super-types account for the vast preponderance of HLA-A and -B polymorphism. Immunogenetics 50: 201212.
  • Sette, A., Buus, S., Appella, E., Smith, J.A., Chesnut, R., Miles, C., Colon, S.M., and Grey, H.M. 1989. Prediction of major histocompatibility complex binding regions of protein antigens by sequence pattern analysis. Proc. Natl. Acad. Sci. 86: 32963300.
  • Stryhn, A., Pedersen, L.O., Romme, T., Holm, C.B., Holm, A., and Buus, S. 1996. Peptide binding specificity of major histocompatibility complex class I resolved into an array of apparently independent sub-specificities: Quantitation by peptide libraries and improved prediction of binding. Eur. J. Immonol. 26: 19111918.
  • Sweet, J.A. 1988. Measuring the accuracy of diagnotic systems. Science 240: 12851293.
  • Thorne, J.L., Goldman, N., and Jones, D.T. 1996. Combination of protein evolution and secondary structure. Mol. Biol. Evolution 13: 666673.