SEARCH

SEARCH BY CITATION

References

  • Bayly, C.I., Cieplak, P., Cornell, W.D., and Kollman, P.A. 1993. A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: The RESP model. J. Phys. Chem. 97: 1026910280.
  • Bruccoleri, R.E., Novotny, J., and Davis, M.E. 1997. Finite difference Poisson-Boltzmann electrostatic calculations: Increased accuracy achieved by harmonic dielectric smoothing and charge. J. Comput. Chem. 18: 268276.
  • Bryce, R.A., Hillier, I.H., and Naismith, J.N. 2001. Carbohydrate–protein recognition: Molecular dynamics simulations and free energy analysis of oligosaccharide binding to concanavalin A. Biophys. J. 81: 13731388.
  • Case, D.A., Pearlman, D.A., Caldwell, J.W., Cheatham, T.E.III, Ross, W.S., Simmerling, C.L., Darden, T.A., Merz, K.M., Stanton, R.V., Cheng, A.L., et al. 1996. AMBER6. University of California, San Francisco.
  • Cheatham, T.E.III, Srinivasan, J., Case, D.A., and Kollman, P.A. 1998. Molecular dynamics and continuum solvent studies of the stability of polyG–polyC and polyA–polyT DNA duplexes in solution. J. Biomol. Struct. Dyn. 16: 265280.
  • Cornell, W.D., Cieplak, P., Bayly, C.I., and Kollman, P.A. 1993. Application of RESP charges to calculate conformational energies, hydrogen bond energies, and free energies of solvation. J. Am. Chem. Soc. 115: 96209631.
  • Dauber-Osguthorpe, P.L., Roberts, V.A., Osguthorpe, D.J., Wolff, J., Genest, M., and Hagler, A.T. 1988. Structure and energetics of ligand-binding to proteins: Escherichia coli dihydrofolate reductase trimethoprim, a drug receptor system. Proteins 4: 3147.
  • David, L., Luo, R., and Gilson, M.K. 2000. Comparison of generalized Born and Poisson models: Energetics and dynamics of HIV protease. J. Comput. Chem. 21: 295309.
  • Donini, O.A.T. and Kollman, P.A.2000. Calculation and prediction of binding free energies for matrix metalloproteinases. J. Med. Chem. 43: 4180.
  • Edinger, S.R., Cortis, C., Shenkin, P.S., and Friesner, R.A. 1997. Solvation free energies of peptides: Comparison of approximate continuum solvation models with accurate solution of the Poisson-Boltzmann equation. J. Phys. Chem. B 101: 11901197.
  • Essmann, U., Perera, L., Berkowitz, M.L., Darden, T., Lee, H., and Pedersen, L.G. 1995. A smooth particle mesh Ewald method. J. Chem. Phys. 103: 85778593.
  • Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Zakrzekski, V.G., Montgomery, J.A., Stratmann, R.E., Burant, J.C., et al. 1998. Gaussian 98. Gaussian Inc., Pittsburgh, PA.
  • Gelin, B.R. and Karplus, M. 1975. Sidechain torsional potentials and motion of amino acids in proteins: Bovine pancreatic trypsin inhibitor. Proc. Natl. Acad. Sci. 72: 20022006.
  • Gilson, M.K. and Honig, B. 1988. Calculation of the total electrostatic energy of a macromolecular system: Solvation energies, binding energies and conformational analysis. Proteins 4: 718.
  • Gilson, M.K., Sharp, K.A., and Honig, B.H. 1987. Calculating the electrostatic potential of molecules in solution: Method and error assessment. J. Comput. Chem. 9: 327335.
  • Holzer, C.T., von Itzstein, M., Jin, B., Pegg, M.S., Stewart, W.P., and Wu, W.-Y. 1993. Inhibition of sialidases from viral, bacterial and mammalian sources by analogs of 2-deoxy-2,3-didehydro-N-acetylneuraminic acid modified at the C-4 position. Glycoconj. J. 10: 4044.
  • Hou, S., Wang, J., Cioslowski, J., Kollman, P.A., and Kuntz, I.D. 2002. Molecular dynamics and free energy analyses of cathepsin D–inhibitor interactions: Insight into structure-based ligand design. J. Med. Chem. 45: 14121419.
  • Hou, T., Guo, S., and Xu, X. 2002. Predictions of binding of a diverse set of ligands to gelatinase-A by a combination of molecular dynamics and continuum solvent models. J. Phys. Chem. 106: 55275535.
  • Jayaram, B., Sprous, D., and Beveridge, D.L. 1998. Solvation free energy of biomolecules: Parameters for a modified generalized Born model consistent with the AMBER force field. J. Phys. Chem. B 102: 95719576.
  • Jedrzejas, M.J., Singh, S., Brouillette, W.J., Air, G.M., and Luo, M. 1995. A strategy for theoretical binding constant, Ki, calculations for neuraminidase aromatic inhibitors designed on the basis of the active site structure of influenza virus neuraminidase. Proteins 23: 264277.
  • Jorgensen, W.L. 1989. Free energy calculations: A breakthrough for modelling organic chemistry in solution. Acc. Chem. Res. 22: 184189.
  • Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W., and Klein, M.L. 1983. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79: 926935.
  • Kalra, P., Reddy, T.V., and Jayaram, B. 2002. Free energy component analysis for drug design: A case study of HIV-1 protease-inhibitor binding. J. Med. Chem. 44: 43254338.
  • Kearsley, S.K. 1989. On the orthogonal transformation used for structural comparisons. Acta Crystallogr. A 45: 208210.
  • Kuhn, B. and Kollman, P.A. 2000a. Binding of a diverse set of ligands to avidin and streptavidin: An accurate quantitative prediction of their relative affinities by a combination of molecular mechanics and continuum solvent models. J. Med. Chem. 43: 37863791.
  • Kuhn, B. and Kollman, P.A. 2000b. A ligand that is predicted to bind better to avidin than biotin: Insights from computational fluorine scanning. J. Am. Chem. Soc. 122: 39093916.
  • Lee, M.R., Duan, Y., and Kollman, P.A. 2000. Use of MM-PB/SA in estimating the free energies of proteins: Application to native, intermediates, and unfolded villin headpiece. Proteins 39: 309316.
  • Misra, V.K., Hecht, J.L., Sharp, K.A., Friedman, R.A., and Honig, B. 1994. Salt effects on ligand-DNA binding : Minor groove binding antibiotics. J. Mol. Biol. 238: 245263.
  • Mohamadi, F., Richards, N.G., Guida, W.C., Liskamp, R., Caufield, C., Chang, G., Hendrickson, T., and Still, W.C. 1990. Macromodel: An integrated software system for modelling organic and bioorganic molecules using molecular mechanics. J. Comput. Chem. 11: 440467.
  • Reyes, C.M. and Kollman, P.A. 2000. Structure and thermodynamics of RNA–protein binding: Using molecular dynamics and free energy analyses to calculate the free energies of binding and conformational change. J. Mol. Biol. 297: 11451158.
  • Ryckaert, J.P., Ciccotti, G., and Berendsen, H.J.C. 1977. Numerical integration of the Cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. J. Comput. Phys. 23: 327341.
  • Sanner, M.F., Olson, A.J., and Spehner, J.C. 1996. Reduced surface: An efficient way to compute molecular surfaces. Biopolymers 38: 305320.
  • Schaefer, M., Bartels, C., and Karplus, M. 1999. Solution conformations of structured peptides: Continuum electrostatics versus distance-dependent dielectric functions. Theor. Chem. Acc. 101: 194204.
  • Shen, J. and Wendoloski, J. 1996. Electrostatic binding energy calculation using the finite difference solution to the linearized Poisson-Boltzmann equation: Assessment of its accuracy. J. Comput. Chem. 17: 350357.
  • Sitkoff, D., Sharp, K.A., and Honig, B. 1994. Accurate calculation of hydration of free energies using macroscopic solvent models. J. Am. Chem. Soc. 98: 19781988.
  • Smith, B.J. and Hall, N.E. 1999. Solvation parameters for amino acids. J. Comput. Chem. 20: 428442.
  • Smith, B.J., Colman, P.M., von Itzstein, M., Daylec, B., and Varghese, J.N. 2001. Analysis of inhibitor binding in influenza virus neuraminidase. Protein Sci. 10: 689696.
  • Srinivasan, J., Cheatham, T.E., Cieplak, P., Kollman, P.A., and Case, D.A. 1998. Continuum solvent studies of the stability of DNA, RNA and phosphoramidate-DNA helices. J. Am. Chem. Soc. 120: 9401.
  • Srinivasan, J., Trevathan, M.W., Beroza, P., and Case, D.A. 1999. Application of a pairwise generalized Born model to proteins and nucleic acids: Inclusion of salt effects. Theor. Chem. Acc. 101: 426434.
  • Still, W.C., Tempczyk, A., Hawley, R.C., and Hendricksen, T.J. 1990. Semi-analytical treatment of solvation for molecular mechanics and dynamics. J. Am. Chem. Soc. 112: 6129.
  • Taylor, N.R. and von Itzstein, M. 1996. A structural and energetics analysis of the binding of a series of N-acetylneuraminic-acid–based inhibitors to influenza virus sialidase. J. Comput. Mol. Des. 10: 233246.
  • Tsui, V. and Case, D.A. 2001. Molecular dynamics simulations of nucleic acids using a generalized Born solvation model. Biopolymers 56: 275291.
  • Varghese, J.N., Epa, V.C., and Colman, P.M. 1995. Three-dimensional structure of the complex of 4-guanidino-neu5ac2en and influenza virus neuraminidase. Protein Sci. 4: 10811087.
  • von Itzstein, M., Dyason, J.C., Oliver, S.W., White, H.F., Wu, W.-Y., Kok, G.B., and Pegg, M.S. 1996. A study of the active site of influenza viral sialidase: An approach to the rational design of novel anti-influenza drugs. J. Med. Chem. 39: 388391.
  • Wall, I.D., Leach, A.R., Salt, D.W., Ford, M.G., and Essex, J.W. 1999. Binding constants of neuraminidase inhibitors: An investigation of the linear interaction energy method. J. Med. Chem. 42: 5142.
  • Wang, J., Cieplak, P., and Kollman, P.A. 2000. How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? J. Comput. Chem. 21: 10491074.
  • Wang, J., Morin, P., Wang, W., and Kollman, P.A. 2001. Use of MM-PBSA in reproducing the binding free energies to HIV-1 RT of TIBO derivatives and predicting the binding mode to HIV-1 RT of efavirenz by docking and MM-PBSA. J. Am. Chem. Soc. 123: 52215230.
  • Wang, T. and Wade, R.C. 2003. Implicit docking models for flexible protein–protein docking by molecular dynamics simulation. Proteins 50: 158169.
  • Woods, C.J., King, M.A., and Essex, J.W. 2001. The configurational dependence of binding free energies: A Poisson-Boltzmann study of neuraminidase inhibitors. J. Comput. Mol. Des 15: 129144.