SEARCH

SEARCH BY CITATION

References

  • Alexandrescu, A.2001. An NMR-based quenched hydrogen exchange investigation of model amyloid fibrils formed by cold shock protein A. Pac. Symp. Biocomput. 6778.
  • Atwood, C.S., Moirs, R.D., Huang, X., Scarpa, R.C., Bacarra, N.M., Romano, D.M., Hartshorn, M.A., Tanzi, R.E., and Bush, A.L. 1998. Dramatic aggregation of Alzheimer Aβ by Cu2+ is induced by conditions representing physiological acidosis. J. Biol. Chem. 273: 1281712826.
  • Bai, Y., Milne, J.S., Mayne, L., and Englander, S.W. 1993. Primary structure effects on peptide group hydrogen exchange. Proteins 17: 7586.
  • Bjorkman, P.J., Saper, M.A., Samraoui, B., Bennett, W.S., Strominger, J.L., and Wiley, D.C. 1987. Structure of the human class I histocompatibility antigen, HLA-A2. Nature 329: 506512.
  • Caffrey, M., Simorre, J.-P., Cusanovich, M., and Marion, D. 1995. Characterization of the dynamic properties of Rhodobacter capsulatus ferricytochrome c′—A 28 kDa paramagnetic heme protein. FEBS Lett. 368: 519522.
  • Chiti, F., De Lorenzi, E., Grossi, S., Mangione, P., Giorgetti, S., Caccialanza, G., Dobson, C.M., Merlini, G., Ramponi, G., and Bellotti, V. 2001a. A partially structured species of β2-microglobulin is significantly populated under physiological conditions and involved in fibrillogenesis. J. Biol. Chem. 276: 4671446721.
  • Chiti, F., Mangione, P., Andreola, A., Giorgetti, S., Stefani, M., Dobson, C.M., Bellotti, V., and Taddei, N. 2001b. Detection of two partially structured species in the folding process of the amyloidogenic protein β2-microglobulin. J. Mol. Biol. 307: 379391.
  • Connelly, G.P., Bai, Y., Jeng, M.-F., and Englander, S.W. 1993. Isotope effects in peptide group hydrogen exchange. Proteins 17: 8792.
  • Davis, D.P., Gallo, G., Vogen, S.M., Dul, J.L., Sciaretta, K.L., Kumar, A., Raffen, R., Stevens, F.J., and Argon, Y. 2001. Both the environment and somatic mutations govern the aggregation pathway of pathogenic immunoglobulin light chain. J. Mol. Biol. 313: 10211034.
  • Delaglio, F., Grzesiek, S., Vuister, G., Zhu, G., Pfeifer, J., and Bax, A. 1995. NMRPipe: A multidimensional spectral processing system based on UNIX Pipes. J. Biomol. NMR 6: 277293
  • Eakin, C.M., Knight, J.D., Morgan, C.J., Gelfand, M.A., and Miranker, A.D. 2002. Formation of a copper specific binding site in non-native states of β-2-microglobulin. Biochemistry 41: 1064610656.
  • Englander, S.W. 2000. Protein folding intermediates and pathways studied by hydrogen exchange. Annu. Rev. Biophys. Biomol. Struct. 29: 213238.
  • Esposito, G., Michelutti, R., Verdone, G., Viglino, P., Hernandez, H., Robinson, C.V., Amoresano, A., Dal Piaz, F., Monti, M., Pucci, P., et al. 2000. Removal of the N-terminal hexapeptide from human β2-microglobulin facilitates protein aggregation and fibril formation. Protein Sci. 9: 831845.
  • Farrow, N.A., Muhandiram, R., Singer, A.U., Pascal, S.M., Kay, C.M., Gish, G., Shoelson, S.E., Pawson, T., Forman-Kay, J.D., and Kay, L.E. 1994. Backbone dynamics of a free and phosphopeptide-complexed src homology 2 domain studied by 15N NMR relaxation. Biochemistry 33: 59846003.
  • Garrett, D.S., Powers, R., Gronenborn, A.M., and Clore, G.M. 1991. A common sense approach to peak picking in two, three and four dimensional spectra using automatic computer analysis of contour diagrams. J. Magn. Reson. 95: 214220.
  • Geyjo, F. and Arakawa, M. 1990. Dialysis amyloidosis: Current disease concepts and new perspectives for its treatment. Contrib. Nephrol. 78: 4760.
  • Gejyo, F., Yamada, T., Odani, S., Nakagawa, Y., Arakawa, M., Kunimoto, T., Kataoka, H., Suzuki, M., Hirasawa, Y., Shirahama, T., et al. 1985. A new form of amyloid protein associated with chronic hemodialysis was identified as β2-microglobulin. Biochem. Biophys. Res. Commun. 129: 701706.
  • Hasegawa, K., Ohhashi, Y., Yamaguchi, I., Takahashi, N., Tsutsumi, S., Goto, Y., Gejyo, F., and Naiki, H. 2003. Amyloidogenic synthetic peptides of β2-microglobulin—A role of the disulfide bond. Biochem. Biophys. Res. Commun. 304: 101106.
  • Heegaard, N.H., Sen, J.W., Kaarsholm, N.C., and Nissen, M.H. 2001. Conformational intermediate of the amyloidogenic protein β2-microglobulin at neutral pH. J. Biol. Chem. 276: 3265732662.
  • Hoshino, M., Hagihara, Y., Nishii, I., Yamazaki, T., Kato, H., and Goto, Y. 2000. High mobility of the phospholipid binding loop of human β2-glycoprotein I domain V revealed by heteronuclear NMR. J. Mol. Biol. 304: 927940.
  • Hoshino, M., Katou, H., Hagihara, Y., Hasegawa, K., Naiki, H., and Goto, Y. 2002. Mapping the core of the β2-microglobulin amyloid fibrils by H/D exchange. Nat. Struct. Biol. 9: 332336.
  • Ippel, J.H., Olofsson, A., Schleucher, J., Lundgren, E., and Wijmenga, S.S. 2002. Probing solvent accessibility of amyloid fibrils by solution NMR spectroscopy. Proc. Natl. Acad. Sci. 99: 86488653.
  • Jones, S., Manning, J., Kad, N.M., and Radford, S.E. 2003, Amyloid-forming peptides from β2-microglobulin—Insights into the mechanism of fibril formation in vitro. J. Mol. Biol. 325: 249257.
  • Kad, N.M., Thomson, N.H., Smith, D.P., Smith, D.A., and Radford, S.E. 2001. β2-Microglobulin and its deamidated variant, N17D form amyloid fibrils with a range of morphologies in vitro. J. Mol. Biol. 313: 559571.
  • Kad, N.M., Myers, S.L., Smith, D.P., Smith, D.A., Radford, S.E., and Thomson, N.H. 2003. Hierarchical assembly of β2-microglobulin amyloid in vitro revealed by atomic force microscopy. J. Mol. Biol. 330: 785797.
  • Katou, H., Kanno, T., Hoshino, M., Hagihara, Y., Tanaka, H., Kawai, T., Hasegawa, K., Naiki, H., and Goto, Y. 2002. The role of disulfide bond in the amyloidogenic state of β2-microglobulin studied by heteronuclear NMR. Protein Sci. 11: 22182229.
  • Kelly, J.W. 1998. The alternative conformations of amyloidogenic proteins and their multi-step assembly pathways. Curr. Opin. Struct. Biol. 8: 101106.
  • Kim, K.S., Fuchs, J.A., and Woodward, C.K. 1993. Hydrogen exchange identifies native state motional domains important in protein folding. Biochemistry 32: 96009608.
  • Kim, Y.-S., Randolph, T.W., Manning, M.C., Stevens, F.J., and Carpenter, J.F. 2003. Congo red populates partially unfolded states of an amyloidogenic protein to enhance aggregation and amyloid fibril formation. J. Biol. Chem. 278: 1084210850.
  • Koradi, R., Billeter, M., and Wüthrich, K. 1996. MOLMOL: A program for display and analysis of macromolecular structures. J. Mol. Graph. 14: 5155.
  • Kozhukh, G., Hagihara, Y., Kawakami, T., Hasegawa, K., Naiki, H., and Goto, Y. 2002. Investigation of the peptide responsible for amyloid fibril formation of β2-microglobulin by Achromobacter protease I. J. Biol. Chem. 277: 13101315.
  • Kramer, M.L., Kratzin, H.D., Schmidt, B., Romer, A., Windl, O., Liemann, S., Hornemann, S., and Kretzchmar, H. 2001. Prion protein binds copper within the physiological concentration range. J. Biol. Chem. 276: 1671116719.
  • Lipari, G. and Szabo, A. 1982a. Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 1. Theory and range of validity. J. Am. Chem. Soc. 104: 45464559.
  • Lipari, G. and Szabo, A. 1982b. Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 2. Analysis of experimental results. J. Am. Chem. Soc. 104: 45594570.
  • Liu, S.T., Howlett, G., and Barrow, C.J. 1999. Histidine 13 is a crucial residue in the zinc ion-induced aggregation of the Aβ peptide of Alzheimer's disease. Biochemistry 38: 93739378.
  • López de la Paz, M., Goldie, K., Zurdo, J., Lacroix, E., Dobson, C.M., Hoenger, A., and Serrano, L. 2002. De novo designed peptide-based amyloid fibrils. Proc. Natl. Acad. Sci. 99: 1605216057.
  • McParland, V.J., Kad, N.M., Kalverda, A.P., Brown, A., Kirwin-Jones, P., Hunter, M.G., Sunde, M., and Radford, S.E. 2000. Partially unfolded states of β2-microglobulin and amyloid formation in vitro.. Biochemistry 39: 87358746.
  • McParland, V.J., Kalverda, A.P., Homans, S.W., and Radford, S.E. 2002. Structural properties of an amyloid precursor of β2-microglobulin. Nat. Struct. Biol. 9: 326331.
  • Miura, T., Suzuki, K., Kohata, N., and Takeuchi, H. 2000. Metal binding modes of Alzheimer's amyloid β-peptide in insoluble aggregates and soluble complexes. Biochemsitry 39: 70247031.
  • Morgan, C.J., Gelfand, M., Atreya, C., and Miranker, A.D. 2001. Kidney dialysis-associated amyloidosis: A molecular role for copper in fiber formation. J. Mol. Biol. 309: 339345.
  • Naiki, H., Hashimoto, N., Suzuki, S., Kimura, H., Nakakuki, K., and Gejyo, F. 1997. Establishment of a kinetic model of dialysis-related amyloid fibril extension in vitro.. Amyloid 4: 223232.
  • Nishii, I., Kataoka, M., and Goto, Y. 1995. Thermodynamic stability of the molten globule states of apomyoglobin. J. Mol. Biol. 250: 223238.
  • Ohhashi, Y., Hagihara, Y., Khozukh, G., Hoshino, M., Hasegawa, K., Yamaguchi, I., Naiki, H., and Goto, Y. 2002. The intrachain disulfide bond of β2-microglobulin is not essential for the immunoglobulin fold at neutral pH but is essential for amyloid fibril formation at acidic pH. J. Biochem. 131: 4552.
  • Rochet, J.C. and Lansbury, P.T.Jr. 2000. Amyloid fibrillogenesis: Themes and variations. Curr. Opin. Struct. Biol. 10: 6068.
  • Schoneich, C. and Williams, T.D. 2002. Cu(II)-catalyzed oxidation of β-amyloid peptide targets His13 and His14 over His6: Detection of 2-Oxo-histidine by HPLC-MS/MS. Chem. Res. Toxicol. 15: 717722.
  • Stockel, J., Safar, J., Wallace, A.C., Cohen, F.E., and Prusiner, S.B. 1998. Prion protein selectively binds copper ions. Biochemistry 37: 71857193.
  • Sunde, M., Serpell, L.C., Bartlam, M., Fraser, P.E., Pepys, M.B., and Blake, C.C. 1997. Common core structure of amyloid fibrils by synchrotron X-ray diffraction. J. Mol. Biol. 273: 729739.
  • Tollinger, M., Skrynnikov, N.R., Mulder, F.A., Forman-Kay, J.D., and Kay, L.E. 2001. Slow dynamics in folded and unfolded states of an SH3 domain. J. Am. Chem. Soc. 123: 1134111352.
  • Trinh, C.H., Smith, D.P., Kalverda, A.P., Phillips, S.E.V., and Radford, S.E. 2002. Crystal structure of monomeric human β2-microglobulin reveals clues to its amyloidogenic properties. Proc. Natl. Acad. Sci. 99: 97719776.
  • Verdone, G., Corazza, A., Viglino, P., Pettirossi, F., Giorgetti, S., Mangione, P., Andreola, A., Stoppini, M., Bellotti, V., and Esposito, G. 2002. The solution structure of human β2-microglobulin reveals the prodromes of its amyloid transition. Protein Sci. 11: 487499.
  • Viles, J.H., Donne, D., Kroon, G., Prusiner, S.B., Cohen, F.E., Dyson, H.J., and Wright, P.E. 2001. Local structural plasticity of the prion protein. Analysis of NMR relaxation dynamics. Biochemistry 40: 27432753.
  • Werner, J.M., Knott, V., Handford, P.A., Campbell, I.D., and Downing, A.K. 2000. Backbone dynamics of a cbEGF domain pair in the presence of calcium. J. Mol. Biol. 296: 10651078.
  • Wyman, J.Jr. 1964. Linked functions and reciprocal effects in hemoglobin: A second look. Adv. Protein Chem. 19: 223286.
  • Zídek, L., Novotny, M.V., and Stone, M.J. 1999. Increased protein backbone conformational entropy upon hydrophobic ligand binding. Nat. Struct. Biol. 6: 11181121.