SEARCH

SEARCH BY CITATION

References

  • Ala, P.J., Huston, E.E., Klabe, R.M., McCabe, D.D., Duke, J.L., Rizzo, C.J., Korant, B.D., DeLoskey, R.J., Lam, P.Y.S., Hodge, C.N., et al. 1997. Molecular basis of HIV-1 protease drug resistance: Structural analysis of mutant proteases complexed with cyclic urea inhibitors. Biochemistry 36: 15731580.
  • Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F., DiNola, A., and Haak, J.R. 1984. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81: 36843690.
  • Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., and Bourne, P.E. 2000. The Protein Data Bank. Nucleic Acids Res. 28: 235242.
  • Case, D.A., Pearlman, D.A., Caldwell, J.W., Cheatham, T.E.III, Wang, J.,Ross, W.S., Simmerling, C., Darden, T., Merz, K.M., Stanton, R.V., et al.2002. AMBER 7. University of California, San Francisco.
  • Collins, J.R., Burt, S.K., and Erickson, J.W. 1995. Flap opening in HIV-1 protease simulated by “activated” molecular dynamics. Nat. Struct. Biol. 2: 334338.
  • Essmann, U., Perera, L., Berkowitz, M.L., and Darden, T. 1995. A smooth particle mesh Ewald method. J. Chem. Phys. 103: 85778593.
  • Freedberg, D.I., Ishima, R., Jacob, J., Wang, Y.-X., Kustanovich, I., Louis, J.M., and Torchia, D.A. 2002. Rapid structural fluctuations of the free HIV protease flaps in solution: Relationship to crystal structures and comparison with predictions of dynamics calculations. Protein Sci. 11: 221232.
  • Hodge, C.N., Straatsma, T.P., and McCammon, J.A.1997. Rational design of HIV protease inhibitors. In Structural biology of viruses (eds. W. Chiu et al.), pp. 451473. Oxford University Press, Oxford, UK.
  • Hooft, R.W., Sander, C., and Vriend, G. 1996. Positioning hydrogen atoms by optimizing hydrogen-bond networks in protein structures. Proteins Struct. Funct. Genet. 26: 363376.
  • Ishima, R., Freedberg, D.I., Wang, Y.-X., Louis, J.M., and Torchia, D.A. 1999. Flap opening and dimer-interface flexibility in the free and inhibitor-bound HIV protease, and their implications for function. Struct. Fold. Des. 7: 10471055.
  • Jorgensen, W.L., Chandrasekhar, J., and Madura, J.D. 1983. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79: 926935.
  • Katoh, E., Louis, J.M., Yamazaki, T., Gronenborn, A.M., Torchia, D.A., and Ishima, R. 2003. A solution NMR study of the binding kinetics and the internal dynamics of an HIV-1 protease–substrate complex. Protein Sci. 12: 13761385.
  • Klabe, R.M., Bacheler, L.T., Ala, P.J., Erickson-Viitanen, S., and Meek, J.L. 1998. Resistance to HIV protease inhibitors: A comparison of enzyme inhibition and antiviral potency. Biochemistry 37: 87358742.
  • Kurt, N., Scott, W.R.P., Schiffer, C.A., and Haliloglu, T. 2003. Cooperative fluctuations of unliganded and substrate-bound HIV-1 protease: A structure-based analysis on a variety of conformations from crystallography and molecular dynamics simulations. Proteins Struct. Funct. Genet. 51: 409422.
  • Lin, J.-H., Perryman, A.L., Schames, J.R., and McCammon, J.A. 2002. Computational drug design accommodating receptor flexibility: The Relaxed Complex scheme. JACS 124: 56325633.
  • Lin, J.-H., Perryman, A.L., Schames, J.R., and McCammon, J.A. 2003. The Relaxed Complex method: Accommodating receptor flexibility for drug design with an improved scoring scheme. Biopolymers 68: 4762.
  • Little, S.J., Holte, S., Routy, J.P., Daar, E.S., Markowitz, M., Collier, A.C., Koup, R.A., Mellors, J.W., Connick, E., Conway, B., et al. 2002. Antiretroviral-drug resistance among patients recently infected with HIV. N. Engl. J. Med. 347: 385394.
  • Luque, I., Todd, M.J., Gomez, J., Semo, N., and Freire, E. 1998. Molecular basis of resistance to HIV-1 protease inhibition: A plausible hypothesis. Biochemistry 37: 57915797.
  • Mahalingam, B., Louis, J.M., Hung, J., Harrison, R.W., and Weber, I.T. 2001. Structural implications of drug-resistant mutants of HIV-1 protease: High-resolution crystal structures of the mutant protease/substrate analogue complexes. Proteins Struct. Funct. Genet. 43: 455464.
  • Mahalingam, B., Boross, P., Wang, Y.-F., Louis, J.M., Fischer, C.C., Tozser, J., Harrison, R.W., and Weber, I.T. 2002. Combining mutations in HIV-1 protease to understand mechanisms of resistance. Proteins Struct. Funct. Genet. 48: 107116.
  • Maschera, B., Darby, G., Palu, G., Wright, L.L., Tisdale, M., Myers, R., Blair, E.D., and Fufine, E.S. 1996. Human immunodeficiency virus: Mutations in the viral protease that confer resistance to saquinavir increase the dissociation rate constant of the protease–saquinavir complex. J. Biol. Chem. 271: 3323133235.
  • Nielsen, J.E., Andersen, K.V., Honig, B., Hooft, R.W., Klebe, G., Vriend, G., and Wade, R.C. 1999. Improving macromolecular electrostatics calculations. Protein Eng. 12: 657662.
  • Ohtaka, H., Velazquez-Campoy, A., Xie, D., and Freire, E. 2002. Overcoming drug resistance in HIV-1 chemotherapy: The binding thermodynamics of Amprenavir and TMC-126 to wild-type and drug-resistant mutants of HIV-1 protease. Protein Sci. 11: 19081916.
  • Piana, S., Carloni, P., and Parrinello, M. 2002a. Role of conformational fluctuations in the enzymatic reaction of HIV-1 protease. J. Mol. Biol. 319: 567583.
  • Piana, S., Carloni, P., and Rothlisberger, U. 2002b. Drug resistance in HIV-1 protease: Flexibility-assisted mechanism of compensatory mutations. Protein Sci. 11: 23932402.
  • Prabu-Jeyabalan, M., Nalivaika, E., and Schiffer, C.A. 2000. How does a symmetric dimer recognize an asymmetric substrate? A substrate complex of HIV-1 protease. J. Mol. Biol. 301: 12071220.
  • Reiling, K.K., Endres, N.F., Dauber, D.S., Craik, C.S., and Stroud, R.M. 2002. Anisotropic dynamics of the JE-2147-HIV protease complex: Drug resistance and thermodynamic binding mode examined in a 1.09 A structure. Biochemistry 41: 45824594.
  • Rhee, S.-Y., Gonzales, M.J., Kantor, R., Betts, B.J., Ravela, J., and Shafer, R.W. 2003. Human immunodeficiency virus reverse transcriptase and protease sequence database. Nucleic Acids Res. 31: 298303.
  • Rick, S.W., Erickson, J.W., and Burt, S.K. 1998. Reaction path and free energy calculations of the transition between alternate conformations of HIV-1 protease. Proteins 32: 716.
  • Rose, R.B., Craik, C.S., and Stroud, R.M. 1998. Domain flexibility in retroviral proteases: Structural implications for drug resistance mutations. Biochemistry 37: 26072621.
  • Ryckaert, J.-P., Ciccotti, G., and Berendsen, H.J.C. 1977. Numerical integration of the Cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. J. Comput. Phys. 23: 327341.
  • Schafmeister, C.E.A.F., Ross, W.S, and Romanovski, V. 1995. LEaP. University of California, San Francisco, CA.
  • Scott, W.R. and Schiffer, C.A. 2000. Curling of flap tips in HIV-1 protease as a mechanism for substrate entry and tolerance of drug resistance. Struct. Fold. Des. 8: 12591265.
  • Spinelli, S., Liu, Q.Z., Alzari, P.M., Hirel, P.H., and Poljak, R.J. 1991. The three-dimensional structure of the aspartyl protease from the HIV-1 isolate BRU. Biochemie 73: 13911396.
  • Thaisrivongs, S., Skulnick, H.I., Turner, S.R., Strohback, J.W., Tommasi, R.A., Johnson, P.D., Aristoff, P.A., Judge, T.M., Gammill, R.B., Morris, J.K., et al. 1996. Structure-based design of HIV protease inhibitors: Sulfonamide-containing 5,6-dihydro-4-hydroxy-2-pyrones as non-peptidic inhibitors. J. Med. Chem. 39: 43494353.
  • Wang, W. and Kollman, P.A. 2001. Computational study of protein specificity: The molecular basis of HIV-1 protease drug resistance. Proc. Natl. Acad. Sci. 98: 1493714942.
  • Zoete, V., Michielin, O., and Karplus, M. 2002. Relation between sequence and structure of HIV-1 protease inhibitor complexes: A model system for the analysis of protein flexibility. J. Mol. Biol. 315: 2152.