SEARCH

SEARCH BY CITATION

References

  • Beechem, J.M. 1992. Global analysis of biochemical and biophysical data. Methods Enzymol. 210: 3754.
  • Beechem, J.M., Gratton, E., Ameloot, M., Knutson, J.R., and Brand, L.1991. Topics in fluorescence spectroscopy: Principles II (ed. J.R.Lakowicz), pp. 241305. Plenum, New York.
  • Campos-Olivas, R., Bruix, M., Santoro, J., Martínez del Pozo, A., Lacadena, J., Gavilanes, J.G., and Rico, M. 1996. 1H and 15N nuclear magnetic resonance assignment and secondary structure of the cytotoxic ribonuclease α-sarcin. Protein Sci. 5: 969972.
  • Case, D.A., Pearlman, D.A., Caldwell, J.W., Cheatham, T.E.III, Wang, J., Ross, W.S., Simmerling, C.L., Darden, T.A., Merz, K.M., Stanton, R.V., Cheng, A.L., et al. 2002. AMBER 7. University of San Francisco, CA.
  • Chen, D.T., and Lin, A. 2002. Domain swapping in ribonuclease T1 allows the acquisition of double-stranded activity. Protein Eng. 15: 9971003.
  • Damberg, P., Jarvet, J., Allard, P., Mets, U., Rigler, R., and Graslund, A. 2002. (13)C-(1)H NMR relaxation and fluorescence anisotropy decay study of tyrosine dynamics in motilin. Biophys. J. 83: 28122825.
  • de Antonio, C., Martínez del Pozo, A., Mancheño, J.M., Oñaderra, M., Lacadena, J., Martínez-Ruiz, A., Pérez-Cañadillas, J.M., Bruix, M., and Gavilanes, J.G. 2000. Assignment of the contribution of the tryptophan residues to the spectroscopic and functional properties of the ribotoxin α-sarcin. Proteins 41: 350361.
  • Endo, Y. and Wool, I.G. 1982. The site of action of α-sarcin on eukaryotic ribosomes. The sequence at the α-sarcin cleavage site in 28 S ribosomal ribonucleic acid. J. Biol. Chem. 257: 90549060.
  • Fushman, D., Ohlenschlager, O., and Ruterjans, H. 1994a. Determination of the backbone mobility of ribonuclease T1 and its 2′GMP complex using molecular dynamics simulations and NMR relaxation data. J. Biomol. Struct. Dyn. 11: 13771402.
  • Fushman, D., Weisemann, R., Thüring, H., and Rüterjans, H. 1994b. Backbone dynamics of ribonuclease T1 and its complex with 2′GMP studied by two-dimensional heteronuclear NMR spectroscopy. J. Biomol. NMR 4: 6178.
  • García de la Torre, J., Huertas, M.L., and Carrasco, B. 2000. HYDRONMR: Prediction of NMR relaxation of globular proteins from atomic-level structures and hydrodynamic calculations. J. Magn. Reson. 147: 138146.
  • García-Mayoral, M.F., Pérez-Cañadillas, J.M., Santoro, J., Ibarra, B., Sánchez-Ruiz, J.M., Lacadena, J., Martínez del Pozo, A., Gavilanes, J.G., Rico, M., and Bruix, M. 2003. Dissecting structural and electrostatic interactions of charged groups in α-sarcin. An NMR study of some mutants involving the catalytic residues. Biochemistry 42: 1312213133.
  • García-Ortega, L., Masip, M., Mancheño, J.M., Oñaderra, M., Lizarbe, M.A., García-Mayoral, M.F., Bruix, M., Martínez del Pozo, A., and Gavilanes, J.G. 2002. Deletion of the NH2-terminal β-hairpin of the ribotoxin α-sarcin produces a nontoxic but active ribonuclease. J. Biol. Chem. 277: 1863218639.
  • Gasset, M., Martínez del Pozo, A., Oñaderra, M., and Gavilanes, J.G. 1989. Study of the interaction between the antitumour protein α-sarcin and phospholipid vesicles. Biochem. J. 258: 569575.
  • Glück, A. and Wool, I.G. 1996. Determination of the 28 S ribosomal RNA identity element (G4319) for α-sarcin and the relationship of recognition to the selection of the catalytic site. J. Mol. Biol. 256: 838848.
  • Glück, A., Endo, Y., and Wool, I.G. 1994. The ribosomal RNA identity elements for ricin and for α-sarcin: Mutations in the putative CG pair that closes a GAGA tetraloop. Nucleic Acids Res. 22: 321324.
  • Güntert, P., Mumenthaler, C., and Wüthrich, K. 1997. Torsion angle dynamics for NMR structure calculation with the new program DYANA. J. Mol. Biol. 273: 283298.
  • Hwu, L., Huang, K., Chen, D., and Lin, A. 2000. The action mode of the ribosome-inactivating protein α-sarcin. J. Biomed. Sci. 7: 420428.
  • Kao, R. and Davies, J. 1995. Fungal ribotoxins: A family of naturally engineered targeted toxins? Biochem. Cell Biol. 73: 11511159.
  • Kao, R. and Davies, J. 1999. Molecular dissection of mitogillin reveals that the fungal ribotoxins are a family of natural genetically engineered ribonucleases. J. Biol. Chem. 274: 1257612582.
  • Kao, R. and Davies, J. 2000. Single amino acid substitutions affecting the specificity of the fungal ribotoxin mitogillin. FEBS Lett. 466: 8790.
  • Koizumi, K., Lintas, C., Nirenberg, M., Maeng, J.S., Ju, J.H., Mack, J.W., Gruschus, J.M., Odenwald, W.F., and Ferretti, J.A. 2003. Mutations that affect the ability of the vnd/NK-2 homeoprotein to regulate gene expression: Transgenic alterations and tertiary structure. Proc. Natl. Acad. Sci. 100: 31193124.
  • Koradi, R., Billeter, M., and Wuthrich, K. 1996. MOLMOL: A program for display and analysis of macromolecular structures. J. Mol. Graph. 14: 2932, 51–55.
  • Kraulis, P.J. 1989. ANSIG: A program for the assignment of protein 1H 2D NMR spectra by interactive computer graphics. J. Magn. Reson. 24: 627633.
  • Laskowski, R.A., Rullmannn, J.A., MacArthur, M.W., Kaptein, R., and Thornton, J.M. 1996. AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR. J. Biomol. NMR 8: 477486.
  • Lillo, M.P., Cañadas, O., Dale, R.E., and Acuña, A.U. 2002. Location and properties of the taxol binding center in microtubules: A picosecond laser study with fluorescent taxoids. Biochemistry 41: 1243612449.
  • Lipari, G. and Szabo, A. 1982. Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 1. Theory and range of validity. J. Am. Chem. Soc. 104: 45464559.
  • Mancheño, J.M., Gasset, M., Albar, J.P., Lacadena, J., Martínez del Pozo, A., Oñaderra, M., and Gavilanes, J.G. 1995a. Membrane interaction of a β-structure-forming synthetic peptide comprising the 116–139th sequence region of the cytotoxic protein α-sarcin. Biophys. J. 68: 23872395.
  • Mancheño, J.M., Gasset, M., Lacadena, J., Martínez del Pozo, A., Oñaderra, M., and Gavilanes, J.G. 1995b. Predictive study of the conformation of the cytotoxic protein α-sarcin: A structural model to explain α-sarcin -membrane interaction. J. Theor. Biol. 172: 259267.
  • Martínez-Ruiz, A., Kao, R., Davies, J., and Martínez del Pozo, A. 1999. Ribotoxins are a more widespread group of proteins within the filamentous fungi than previously believed. Toxicon 37: 15491563.
  • Nayak, S.K., Shveta, J.K. and Batra, J.K. 2000. Localization of the catalytic activity in restrictocin molecule by deletion mutagenesis. Eur. J. Biochem. 267: 17771783.
  • Nayak, S.K., Bagga, S., Gaur, D., Nair, D.T., Salunke, D.M., and Batra, J.K. 2001. Mechanism of specific target recognition and RNA hydrolysis by ribonucleolytic toxin restrictocin. Biochemistry 40: 91159124.
  • Olmo, N., Turnay, J., González de Buitrago, G., López de Silanes, I., Gavilanes, J.G., and Lizarbe, M.A. 2001. Cytotoxic mechanism of the ribotoxin α-sarcin. Induction of cell death via apoptosis. Eur. J. Biochem. 268: 21132123.
  • Olson, B.H. and Goerner, G.L. 1965. α-sarcin, a new antitumor agent. I. Isolation, purification, chemical composition, and the identity of a new amino acid. Appl. Microbiol. 13: 314321.
  • Pérez-Cañadillas, J.M., Campos-Olivas, R., Lacadena, J., Martínez del Pozo, A., Gavilanes, J.G., Santoro, J., Rico, M., and Bruix, M. 1998. Characterization of pKa values and titration shifts in the cytotoxic ribonuclease α-sarcin by NMR. Relationship between electrostatic interactions, structure, and catalytic function. Biochemistry 37: 1586515876.
  • Pérez-Cañadillas, J.M., Santoro, J., Campos-Olivas, R., Lacadena, J., Martínez del Pozo, A., Gavilanes, J.G., Rico, M., and Bruix, M. 2000. The highly refined solution structure of the cytotoxic ribonuclease α-sarcin reveals the structural requirements for substrate recognition and ribonucleolytic activity. J. Mol. Biol. 299: 10611073.
  • Pérez-Cañadillas, J.M., Guenneugues, M., Campos-Olivas, R., Santoro, J., Martínez del Pozo, A., Gavilanes, J.G., Rico, M., and Bruix, M. 2002. Backbone dynamics of the cytotoxic ribonuclease α-sarcin by 15N NMR relaxation methods. J. Biomol. NMR 24: 301316.
  • Pfeiffer, S., Karimi-Nejad, Y., and Ruterjans, H. 1997. Limits of NMR structure determination using variable target function calculations: Ribonuclease T1, a case study. J. Mol. Biol. 266: 400423.
  • Seggerson, K. and Moore, P.B. 1998. Structure and stability of variants of the sarcin-ricin loop of 28S rRNA: NMR studies of the prokaryotic SRL and a functional mutant. RNA 4: 12031215.
  • Shortle, D. and Sondek, J. 1995. The emerging role of insertions and deletions in protein engineering. Curr. Opin. Biotechnol. 6: 387393.
  • Szewczak, A.A. and Moore, P.B. 1995. The sarcin/ricin loop, a modular RNA. J. Mol. Biol. 247: 8198.
  • Szewczak, A.A., Moore, P.B., Chang, Y.L., and Wool, I.G. 1993. The conformation of the sarcin/ricin loop from 28S ribosomal RNA. Proc. Natl. Acad. Sci. 90: 95819585.
  • Takeda, E., Bi, X., Yoshinari, S., and Endo, Y. 1997. Mechanism of substrate recognition by the ribotoxin, α-sarcin. Nucleic Acids Symp. Ser. 37: 131132.
  • Wool, I.G. 1984. The mechanism of action of the cytotoxic nuclease α-sarcin and its use to analyse ribosome structure. Trends Biochem. Sci. 9: 1417.
  • Wüthrich, K.1986. NMR of proteins and nucleic acids, pp. 117199. Wiley, New York.
  • Yang, X. and Moffat, K. 1996. Insights into specificity of cleavage and mechanism of cell entry from the crystal structure of the highly specific Aspergillus ribotoxin, restrictocin. Structure 4: 837852.
  • Yang, X., Gerczei, T., Glover, L.T., and Correll, C.C. 2001. Crystal structures of restrictocin-inhibitor complexes with implications for RNA recognition and base flipping. Nat. Struct. Biol. 8: 968973.
  • Zhang, F. and Brüschweiler, R. 2002. Contact model for the prediction of NMR N-H order parameters in globular proteins. J. Am. Chem. Soc. 124: 1265412655.