SEARCH

SEARCH BY CITATION

References

  • Adams, C.M., Budnik, B.A., Haselmann, K.F., Kjeldsen, F., and Zubarev, R.A. 2004. Electron capture dissociation distinguishes a single D-amino acid in a protein and probes the tertiary structure. J. Am. Soc. Mass Spectrom. 15: 10871098.
  • Aswad, D.W., Paranandi, M.V., and Schurter, B.T. 2000. Isoaspartate in peptides and proteins: Formation, significance, and analysis. J. Pharm. Biomed. Anal. 21: 11291136.
  • Athiner, L., Kindrachuk, J., Georges, F., and Napper, S. 2002. The influence of protein structure on the products emerging from succinimide hydrolysis. J. Biol. Chem. 277: 3050230507.
  • Biemann, K. 1990. Sequencing of peptides by tandem mass spectrometry and high-energy collision-induced dissociation. Methods Enzymol. 193: 455479.
  • Breuker, K., Oh, H.B., Horn, D.M., Cerda, B.A., and McLafferty, F.W. 2002. Detailed unfolding and folding of gaseous ubiquitin ions characterized by electron capture dissociation. J. Am. Chem. Soc. 124: 64076420.
  • Chavous, D.A., Jackson, F.R., and O'Connor, C.M. 2001. Extension of the Drosphilia lifespan by overexpression of a protein repair methyltransferase. Proc. Natl. Acad. Sci. 98: 1481414818.
  • Clarke, S. 1987. Propensity for spontaneous succinimide formation from aspartyl and asparaginyl residues in cellular proteins. Int. J. Pept. Protein Res. 30: 808821.
  • Cooper, H.J., Hudgins, R.R., Hakansson, K., and Marshall, A.G. 2002. Characterization of amino acid side chain losses in electron capture dissociation. J. Am. Soc. Mass Spectrom. 13: 241249.
  • Easton, C.J. 1991. alpha-Carbon-centered radicals from amino acids and their derivatives. In Advances in detailed reaction mechanisms, pp. 83129. JAI Press Inc., Greenwich, CT.
  • Gauthier, J.W., Trautman, T.R., and Jacobson, D.B. 1991. Sustained off-resonance irradiation for collision-activated dissociation involving Fourier-transform mass-spectrometry—Collision-activated dissociation technique that emulates infrared multiphoton dissociation. Anal. Chim. Acta 246: 211225.
  • Gonzalez, L.J., Shimizu, T., Satomi, Y., Betancourt, L., Besada, V., Padron, G., Orlando, R., Shirasawa, T., Shimonishi, Y., and Takao, T. 2000. Differentiating α- and β-aspartic acids by electrospray ionization and low-energy tandem mass spectrometry. Rapid Commun. Mass Spectrom. 14: 20922102.
  • Gu, C.G., Tsaprailis, G., Breci, L., and Wysocki, V.H. 2000. Selective gas-phase cleavage at the peptide bond terminal to aspartic acid in fixed-charge derivatives of Asp-containing peptides. Anal. Chem. 72: 58045813.
  • Hakansson, K., Cooper, H.J., Emmett, M.R., Costello, C.E., Marshall, A.G., and Nilsson, C.L. 2001. Electron capture dissociation and infrared multiphoton dissociation MS/MS of an N-glycosylated tryptic peptide to yield complementary sequence information. Anal. Chem. 73: 45304536.
  • Haselmann, K.F., Budnik, B.A., Kjeldsen, F., Polfer, N.C., and Zubarev, R.A. 2002. Can the (M center dot-X) region in electron capture dissociation provide reliable information on amino acid composition of polypeptides? Eur. J. Mass Spectrom. 8: 461469.
  • Horn, D.M., Breuker, K., Frank, A.J., and McLafferty, F.W. 2001. Kinetic intermediates in the folding of gaseous protein ions characterized by electron capture dissociation mass spectrometry. J. Am. Chem. Soc. 123: 97929799.
  • Johnson, B.A., Langmack, E.L., and Aswad, D.W. 1987. Partial repair of deamidation-damaged calmodulin by protein carboxyl methyltransferase. J. Biol. Chem. 262: 1228312287.
  • Kelleher, N.L., Lin, H.Y., Valaskovic, G.A., Aaserud, D.J., Fridriksson, E.K., and McLafferty, F.W. 1999a. Top down versus bottom up protein characterization by tandem high-resolution mass spectrometry. J. Am. Chem. Soc. 121: 806812.
  • Kelleher, R.L., Zubarev, R.A., Bush, K., Furie, B., Furie, B.C., McLafferty, F.W., and Walsh, C.T. 1999b. Localization of labile posttranslational modifications by electron capture dissociation: The case of gamma-carboxyglutamic acid. Anal. Chem. 71: 42504253.
  • Kim, E., Lowenson, J.D., MacLaren, D.C., Clarke, S., and Young, S.G. 1997. Deficiency of a protein-repair enzyme results in the accumulation of altered proteins, retardation of growth, and fatal seizures in mice. Proc. Natl. Acad. Sci. 94: 61326137.
  • Kjeldsen, F., Haselmann, K.F., Budnik, B.A., Jensen, F., and Zubarev, R.A. 2002. Dissociative capture of hot (3–13 eV) electrons by polypeptide polycations: An efficient process accompanied by secondary fragmentation. Chem. Phys. Lett. 356: 201206.
  • Kjeldsen, F., Haselmann, K.F., Sorensen, E.S., and Zubarev, R.A. 2003. Distinguishing of Ile/Leu amino acid residues in the PP3 protein by (Hot) electron capture dissociation in Fourier transform ion cyclotron resonance mass spectrometry. Anal. Chem. 75: 12671274.
  • Kossiakoff, A.A. 1988. Tertiary structure is a principal determinant to protein deamidation. Science 240: 191194.
  • Kruger, N.A., Zubarev, R.A., Carpenter, B.K., Kelleher, N.L., Horn, D.M., and McLafferty, F.W. 1999. Electron capture versus energetic dissociation of protein ions. Int. J. Mass Spectrom. 183: 15.
  • Lehmann, W. and Schlosser, A. 2000. Five-membered ring formation in uni-molecular reactions of peptides: A key structural element controlling low-energy collision-induced dissociation of peptides. J. Mass Spectrom. 35: 13821390.
  • Lehmann, W., Schlosser, A., Erben, G., Pipkorn, R., Bossemeyer, D., and Kinzel, V. 2000. Analysis of isoaspartate in peptides by electrospray tandem mass spectrometry. Protein Sci. 9: 22602268.
  • Leymarie, N., Costello, C.E., and O'Connor, P.B. 2003. Electron capture dissociation initiates a free radical reaction cascade. J. Am. Chem. Soc. 125: 89498958.
  • Luu, N.C., Robinson, S., Zhao, R., McKean, R., and Ridge, D.P. 2004. Mass spectrometric differentiation of α- and β-aspartic acid in a pseudo-tetrapeptide thrombosis inhibitor and its isomer. Eur. J. Mass Spectrom. 10: 279287.
  • Marshall, A.G. and Verdun, F.R. 1990. Fourier transforms in NMR, optical, and mass spectrometry: A users handbook. Elsevier, New York.
  • McLafferty, F.W. and Turecek, F. 1993. Interpretation of mass spectra. In Interpretation of mass spectra, 4th ed. (eds. F.W.McLafferty, and F.Turecek), pp. 72. University Science Books, Sausalito, CA.
  • Mirgorodskaya, E., Roepstorff, P., and Zubarev, R.A. 1999. Localization of O-glycosylation sites in peptides by electron capture dissociation in a Fourier transform mass spectrometer. Anal. Chem. 71: 44314436.
  • Oh, H.B., Breuker, K., Sze, S.K., Ge, Y., Carpenter, B.K., and McLafferty, F.W. 2002. Secondary and tertiary structures of gaseous protein ions characterized by electron capture dissociation mass spectrometry and photofragment spectroscopy. Proc. Natl. Acad. Sci. 99: 1586315868.
  • Pittman, J.L., Thomson, B.A., and O'Connor, P.B. 2004. A novel hybrid instrument using a commercial electrospray ionization source with a high-performance FTMS for proteomics applications. In Proceedings of the 52nd ASMS Conference. Nashville, TN.
  • Qian, W.J., Gosche, M.B., Camp, D.G., Yu, L.R., Tang, K.Q., and Smith, R.D. 2003. Phosphoprotein isotope-coded solid-phase tag approach for enrichment and quantitative analysis of phosphopeptides from complex mixtures. Anal. Chem. 75: 54415450.
  • Radkiewicz, J.L., Zipse, H., Clarke, S., and Houk, K.N. 1996. Accelerated racemization of aspartic acid and asparagine residues via succinimide intermediates: An ab initio theoretical exploration of mechanism. J. Am. Chem. Soc. 118: 91489155.
  • Rauk, A., Yu, D., and Armstrong, D.A. 1997. Toward site specificity of oxidative damage in proteins: C—H and C—C bond dissociation energies and reduction potentials of the radicals of alanine, serine, and threonine residues—An ab initio study. J. Am. Chem. Soc. 119: 208217.
  • Reissner, K.J. and Aswad, D.W. 2003. Deamidation and isoaspartate formation in proteins: Unwanted alterations or surreptitious signals? Cell. Mol. Life Sci. 60: 12811295.
  • Ritz-Timme, S. and Collins, M.J. 2002. Racemization of aspartic acid in human proteins. Ageing Res. Rev. 1: 4359.
  • Robinson, N.E. and Robinson, A.B. 2001a. Molecular clocks. Proc. Natl. Acad. Sci. 98: 944949.
  • Robinson, N.E. and Robinson, A.B. 2001b. Prediction of protein deamidation rates from primary and three-dimensional structure. Proc. Natl. Acad. Sci. 98: 43674372.
  • Robinson, N.E., Robinson, A.B., and Merrifield, R.B. 2001. Mass spectrometric evaluation of synthetic peptides as primary structure models for peptide and protein deamidation. J. Pept. Res. 57: 483493.
  • Roepstorff, P. and Fohlmann, J. 1984. Proposal for a common nomenclature for sequence ions in mass spectra of peptides. Biomed. Mass Spectrom. 11: 601.
  • Roher, A.E., Lowenson, J.D., Clarke, S., Wolkow, C., Wang, R., Cotter, R.J., Reardon, I.M., Zurcherneely, H.A., Heinrikson, R.L., Ball, M.J., et al. 1993. Structural alterations in the peptide backbone of Beta-Amyloid core protein may account for its deposition and stability in Alzheimers Disease. J. Biol. Chem. 268: 30723083.
  • Schindler, P., Muller, D., Marki, W., Grossenbacher, H., and Richter, W.J. 1996. Characterization of a β-Asp33 isoform of recombinant hirudin sequence variant 1 by low-energy collision-induced dissociation. J. Mass Spectrom. 31: 967974.
  • Senko, M.W., Speir, J.P., and McLafferty, F.W. 1994. Collisional activation of large multiply-charged ions using Fourier-transform mass-spectrometry. Anal. Chem. 66: 28012808.
  • Shi, S.D.H., Hemling, M.E., Carr, S.A., Horn, D.M., Lindh, I., and McLafferty, F.W. 2001. Phosphopeptide/phosphoprotein mapping by electron capture dissociation mass spectrometry. Anal. Chem. 73: 1922.
  • Shimizu, T., Watanabe, A., Ogawara, M., Mori, H., and Shirasawa, T. 2000. Isoaspartate formation and neurodegeneration in Alzheimer's disease. Arch. Biochem. Biophys. 381: 225234.
  • Stensballe, A., Jensen, O.N., Olsen, J.V., Haselmann, K.F., and Zubarev, R.A. 2000. Electron capture dissociation of singly and multiply phosphorylated peptides. Rapid Commun. Mass Spectrom. 14: 17931800.
  • Syka, J.E.P., Coon, J.J., Schroeder, M.J., Shabanowitz, J., and Hunt, D.F. 2004. Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc. Natl. Acad. Sci. 101: 95289533.
  • Tsybin, Y.O., Hakansson, P., Budnik, B.A., Haselmann, K.F., Kjeldsen, F., Gorshkov, M., and Zubarev, R.A. 2001. Improved low-energy electron injection systems for high rate electron capture dissociation in Fourier transform ion cyclotron resonance mass spectrometry. Rapid Commun. Mass Spectrom. 15: 18491854.
  • Tsybin, Y.O., Ramstrom, M., Witt, M., Baykut, G., and Hakansson, P. 2004. Peptide and protein characterization by high-rate electron capture resonance mass spectrometry. J. Mass Spectrom. 39: 719729.
  • Valaskovic, G.A., Kelleher, N.L., and McLafferty, F.W. 1996. Attomole protein characterization by capillary electrophoresis mass spectrometry. Science 273: 11991202.
  • Zubarev, R.A., Kelleher, N.L., and McLafferty, F.W. 1998. Electron capture dissociation of multiply charged protein cations. A nonergodic process. J. Am. Chem. Soc. 120: 32653266.
  • Zubarev, R.A., Horn, D.M., Fridriksson, E.K., Kelleher, N.L., Kruger, N.A., Lewis, M.A., Carpenter, B.K., and McLafferty, F.W. 2000. Electron capture dissociation for structural characterization of multiply charged protein cations. Anal. Chem. 72: 563573.