SEARCH

SEARCH BY CITATION

References

  • Bai, Y., Milne, J.S., Mayne, L., and Englander, S.W. 1993. Primary structure effects on peptide group hydrogen exchange. Proteins 17: 7586.
  • Barrow, C.J., Yasuda, A., Kenny, P.T.M., and Zagorski, M. 1992. Solution conformations and aggregational properties of synthetic amyloid β-peptides of Alzheimer's disease. J. Mol. Biol. 225: 10751093.
  • Bax, A. and Davis, D.G. 1985. MLEV-17-based two-dimensional homonuclear magnetization transfer spectroscopy. J. Magn. Reson. 65: 355360.
  • Benzinger, T.L.S., Gregory, D.M., Burkoth, T.S., Miller-Auer, H., Lynn, D.G., Botto, R.E., and Meredith, S.C. 2000. Two-dimensional structure of β-amyloid (10–35) fibrils. Biochemistry 39: 34913499.
  • Bitan, G., Lomakin, A., and Teplow, D.B. 2001. Amyloid β-protein oligomerization: Prenucleation interactions revealed by photo-induced cross-linking of unmodified proteins. J. Biol. Chem. 276: 3517635184.
  • Bitan, G., Kirkitadze, M.D., Lomakin, A., Vollers, S.S., Benedek, G.B., and Teplow, D.B. 2003a. Amyloid β-protein (Aβ) assembly: Aβ40 and Aβ42 oligomerize through distinct pathways. Proc. Natl. Acad. Sci. 100: 330335.
  • Bitan, G., Tarus, B., Vollers, S.S., Lashuel, H.A., Condron, M.M., Straub, J.E., and Teplow, D.B. 2003b. A molecular switch in amyloid assembly: Met35 and amyloid β-protein oligomerization. J. Am. Chem. Soc. 125: 1535915365.
  • Borreguero, J.M., Urbanc, B., Lazo, N.D., Buldyrev, S.V., Teplow, D.B., and Stanley, H.E. 2005. Folding events in the 21–30 region of amyloid β-protein (Aβ) studied in silico. Proc. Natl. Acad. Sci. (in press).
  • Bugiani, O., Padovani, A., Magoni, M., Andora, G., Sgarzi, M., Savoiardo, M., Bizzi, A., Giaccone, G., Rossi, G., and Tagliavini, F. 1998. An Italian type of HCHWA. Neurobiol. Aging 19: S238.
  • Butterfield, D.A. 2002. Amyloid β-peptide (1–42)-induced oxidative stress and neurotoxicity: Implications for neurodegeneration in Alzheimer's disease brain. Free Radic. Res. 36: 13071313.
  • Coles, M., Bicknell, W., Watson, A.A., Fairlie, D.P., and Craik, D.J. 1998. Solution structure of amyloid β-peptide(1–40) in a water–micelle environment —Is the membrane-spanning domain where we think it is? Biochemistry 37: 1106411077.
  • Cras, P., van Harskamp, F., Hendriks, L., Ceuterick, C., van Duijn, C.M., Stefanko, S.Z., Hofman, A., Kros, J.M., Van Broeckhoven, C., and Martin, J.J. 1998. Presenile Alzheimer dementia characterized by amyloid angiopathy and large amyloid core type senile plaques in the APP 692Ala[RIGHTWARDS ARROW]Gly mutation. Acta Neuropathol. (Berl). 96: 253260.
  • Dobson, C.M. 1999. Protein misfolding, evolution and disease. Trends Biochem. Sci. 24: 329332.
  • Esler, W.P., Felix, A.M., Stimson, E.R., Lachenmann, M.J., Ghilardi, J.R., Lu, Y.A., Vinters, H.V., Mantyh, P.W., Lee, J.P., and Maggio, J.E. 2000a. Activation barriers to structural transition determine deposition rates of Alzheimer's disease Aβ amyloid. J. Struct. Biol. 130: 174183.
  • Esler, W.P., Stimson, E.R., Jennings, J.M., Vinters, H.V., Ghilardi, J.R., Lee, J.P., Mantyh, P.W., and Maggio, J.E. 2000b. Alzheimer's disease amyloid propagation by a template-dependent dock-lock mechanism. Biochemistry 39: 62886295.
  • Fezoui, Y., Hartley, D.M., Harper, J.D., Khurana, R., Walsh, D.M., Condron, M.M., Selkoe, D.J., Lansbury, P.T., Fink, A.L., and Teplow, D.B. 2000. An improved method of preparing the amyloid β-protein for fibrillogenesis and neurotoxicity experiments. Amyloid 7: 166178.
  • Fontana, A., Polverino de Laureto, P., De Filippis, V., Scaramella, E., and Zambonin, M. 1997. Probing the partly folded states of proteins by limited proteolysis. Fold. Des. 2: R17R26.
  • George, A.R. and Howlett, D.R. 1999. Computationally derived structural models of the β-amyloid found in Alzheimer's disease plaques and the interaction with possible aggregation inhibitors. Biopolymers 50: 733741.
  • Gibbs, A.C., Bjorndahl, T.C., Hodges, R.S., and Wishart, D.S. 2002. Probing the structural determinants of type II′β-turn formation in peptides and proteins. J. Am. Chem. Soc. 124: 12031213.
  • Gorevic, P.D., Castaño, E.M., Sarma, R., and Frangione, B. 1987. Ten to fourteen residue peptides of Alzheimer's disease protein are sufficient for amyloid fibril formation and its characteristic X-ray diffraction pattern. Biochem. Biophys. Res. Commun. 147: 854862.
  • Grabowski, T.J., Cho, H.S., Vonsattel, J.P.G., Rebeck, G.W., and Greenberg, S.M. 2001. Novel amyloid precursor protein mutation in an Iowa family with dementia and severe cerebral amyloid angiopathy. Ann. Neurol. 49: 697705.
  • Grant, G.A., Xu, X.L., and Hu, Z. 2000. Role of an interdomain Gly–Gly sequence at the regulatory-substrate domain interface in the regulation of Escherichia coli. D-3-phosphoglycerate dehydrogenase. Biochemistry 39: 73167319.
  • Griffiths-Jones, S.R., Maynard, A.J., and Searle, M.S. 1999. Dissecting the stability of a β-hairpin peptide that folds in water: NMR and molecular dynamics analysis of the β-turn and β-strand contributions to folding. J. Mol. Biol. 292: 10511069.
  • Gursky, O. and Aleshkov, S. 2000. Temperature-dependent β-sheet formation in β-amyloid Aβ(1–40) peptide in water: Uncoupling β-structure folding from aggregation. Biochim. Biophys. Acta 1476: 93102.
  • Haass, C. and Steiner, H. 2001. Protofibrils, the unifying toxic molecule of neurodegenerative disorders? Nat. Neurosci. 4: 859860.
  • Haass, C., Schlossmacher, M.G., Hung, A.Y., Vigo-Pelfrey, C., Mellon, A., Ostaszewski, B.L., Lieberburg, I., Koo, E.H., Schenk, D., Teplow, D.B., et al. 1992. Amyloid β-peptide is produced by cultured cells during normal metabolism. Nature 359: 322325.
  • Hardy, J. 1997. The Alzheimer family of diseases—Many etiologies, one pathogenesis. Proc. Natl. Acad. Sci. 94: 20952097.
  • Hardy, J. and Allsop, D. 1991. Amyloid deposition as the central event in the aetiology of Alzheimer's disease. Trends Pharmacol. 12: 383388.
  • Harper, J.D., Wong, S.S., Lieber, C.M., and Lansbury, P.T. 1997. Observation of metastable Aβ amyloid protofibrils by atomic force microscopy. Chem. Biol. 4: 119125.
  • Hartley, D.M., Walsh, D.M., Ye, C.P.P., Diehl, T., Vasquez, S., Vassilev, P.M., Teplow, D.B., and Selkoe, D.J. 1999. Protofibrillar intermediates of amyloid β-protein induce acute electrophysiological changes and progressive neurotoxicity in cortical neurons. J. Neurosci. 19: 88768884.
  • Havel, T.F. 1991. An evaluation of computational strategies for use in the determination of protein structure from distance constraints obtained by nuclear magnetic resonance. Prog. Biophys. Mol. Biol. 56: 4378.
  • Hendriks, L. and Vanbroeckhoven, C. 1996. The βA4 amyloid precursor protein gene and Alzheimer's disease. Eur. J. Biochem. 237: 615.
  • Hilbich, C., Kisters-Woike, B., Reed, J., Masters, C.L., and Beyreuther, K. 1991. Aggregation and secondary structure of synthetic amyloid βA4 peptides of Alzheimer's disease. J. Mol. Biol. 218: 149163.
  • Hou, L., Kang, I., Marchant, R.E., and Zagorski, M.G. 2002a. Methionine 35 oxidation reduces fibril assembly of the amyloid β-(1–42) peptide of Alzheimer's disease. J. Biol. Chem. 277: 4017340176.
  • Hou, L., Shao, H., and Zagorski, M.G. 2002b. Oxidation of Met35 exerts a profound effect on Aβ amyloidosis. Neurobiol. Aging 23: S195.
  • Hou, L., Shao, H., Zhang, Y., Li, H., Menon, N.K., Neuhaus, E.B., Brewer, J.M., Byeon, I.-J.L., Ray, D.G., Vitek, M.P., et al. 2004. Solution NMR studies of the Aβ(1–40) and Aβ(1–42) peptides establish that the Met35 oxidation state affects the mechanism of amyloid formation. J. Am. Chem. Soc. 126: 19922005.
  • Hubbard, S.J. 1998. The structural aspects of limited proteolysis of native proteins. Biochim. Biophys. Acta 1382: 191206.
  • Hutchinson, E.G. and Thornton, J.M. 1994. A revised set of potentials for β-turn formation in proteins. Protein Sci. 3: 22072216.
  • Hwang, T.L. and Shaka, A.J. 1992. Cross relaxation without TOCSY— Transverse rotating-frame Overhauser effect spectroscopy. J. Am. Chem. Soc. 114: 31573159.
  • Iwatsubo, T., Mann, D.M.A., Odaka, A., Suzuki, N., and Ihara, Y. 1995. Amyloid β Protein (Aβ) Deposition: Aβ42(43) precedes Aβ40 in Down syndrome. Ann. Neurol. 37: 294299.
  • Jarrett, J.T., Berger, E.P., and Lansbury, P.T. Jr. 1993. The C terminus of the β protein is critical in amyloidogenesis. Ann. N.Y. Acad. Sci. 695: 144148.
  • Kamino, K., Orr, H.T., Payami, H., Wijsman, E.M., Alonso, E., Pulst, S.M., Anderson, L., O'dahl, S., Nemens, E., White, J.A., et al. 1992. Linkage and mutational analysis of familial Alzheimer disease kindreds for the APP gene region. Am. J. Hum. Genet. 51: 9981014.
  • Kheterpal, I., Williams, A., Murphy, C., Bledsoe, B., and Wetzel, R. 2001. Structural features of the Aβ amyloid fibril elucidated by limited proteolysis. Biochemistry 40: 1175711767.
  • Kheterpal, I., Lashuel, H.A., Hartley, D.M., Walz, T., Lansbury, P.T. Jr. and Wetzel, R. 2003. Aβ protofibrils possess a stable core structure resistant to hydrogen exchange. Biochemistry 42: 1409214098.
  • Kirkitadze, M.D., Condron, M.M., and Teplow, D.B. 2001. Identification and characterization of key kinetic intermediates in amyloid β-protein fibrillogenesis. J. Mol. Biol. 312: 11031119.
  • Kirkitadze, M.D., Bitan, G., and Teplow, D.B. 2002. Paradigm shifts in Alzheimer's disease and other neurodegenerative disorders: The emerging role of oligomeric assemblies. J. Neurosci. Res. 69: 567577.
  • Klein, W.L., Krafft, G.A., and Finch, C.E. 2001. Targeting small Aβ oligomers: The solution to an Alzheimer's disease conundrum? Trends Neurosci. 24: 219224.
  • Klein, W.L., Stine, W.B. Jr., and Teplow, D.B. 2004. Small assemblies of unmodified amyloid β-protein are the proximate neurotoxin in Alzheimer's disease. Neurobiol. Aging 25: 569580.
  • Kusumoto, Y., Lomakin, A., Teplow, D.B., and Benedek, G.B. 1998. Temperature dependence of amyloid β-protein fibrillization. Proc. Natl. Acad. Sci. 95: 1227712282.
  • Laczko, I., Holly, S., Konya, Z., Soos, K., Varga, J.L., Hollosi, M., and Penke, B. 1994. Conformational mapping of amyloid peptides from the putative neurotoxic 25–35 region. Biochem. Biophys. Res. Commun. 205: 120126.
  • Lambert, M.P., Barlow, A.K., Chromy, B.A., Edwards, C., Freed, R., Liosatos, M., Morgan, T.E., Rozovsky, I., Trommer, B., Viola, K.L., et al. 1998. Diffusible, nonfibrillar ligands derived from Aβ1–42 are potent central nervous system neurotoxins. Proc. Natl. Acad. Sci. 95: 64486453.
  • Lazo, N.D. and Downing, D.T. 1998. Amyloid fibrils may be assembled from β-helical protofibrils. Biochemistry 37: 17311735.
  • Lazo, N.D. and Downing, D.T. 1999. Fibril formation by amyloid-β proteins may involve β-helical protofibrils. J. Pept. Res. 53: 633640.
  • Le Châtelier, H. 1884. Sur un énoncé général des lois des équilibres chimiques. Comptes Rendus 99: 786789.
  • Lee, J.P., Stimson, E.R., Ghilardi, J.R., Mantyh, P.W., Lu, Y.A., Felix, A.M., Llanos, W., Behbin, A., Cummings, M., Vancriekinge, M., et al. 1995. 1H NMR of Aβ amyloid peptide congeners in water solution. Conformational changes correlate with plaque competence. Biochemistry 34: 51915200.
  • Levy, E., Carman, M.D., Fernandez-Madrid, I.J., Power, M.D., Lieberburg, I., vanDuinen, S.G., Bots, G.T.A.M., Luyendijk, W., and Frangione, B. 1990. Mutation of the Alzheimer's disease amyloid gene in hereditary cerebral hemorrhage, Dutch-type. Science 248: 11241126.
  • Lomakin, A., Chung, D.S., Benedek, G.B., Kirschner, D.A., and Teplow, D.B. 1996. On the nucleation and growth of amyloid β-protein fibrils: Detection of nuclei and quantitation of rate constants. Proc. Natl. Acad. Sci. 93: 11251129.
  • Ma, B. and Nussinov, R. 2002. Stabilities and conformations of Alzheimer's β-amyloid peptide oligomers (Aβ16–22, Aβ16–35, and Aβ10–35): Sequence effects. Proc. Natl. Acad. Sci. 99: 1412614131.
  • Marqusee, S. and Baldwin, R.L. 1987. Helix stabilization by Glu-…Lys+ salt bridges in short peptides of de novo design. Proc. Natl. Acad. Sci. 84: 88988902.
  • Massi, F. and Straub, J.E. 2001. Energy landscape theory for Alzheimer's amyloid β-peptide fibril elongation. Proteins 42: 217229.
  • Maynard, A.J., Sharman, G.J., and Searle, M.S. 1998. Origin of β-hairpin stability in solution: Structural and thermodynamic analysis of the folding of model peptide supports hydrophobic stabilization in water. J. Am. Chem. Soc. 120: 19962007.
  • Melchor, J.P., McVoy, L., and Van Nostrand, W.E. 2000. Charge alterations of E22 enhance the pathogenic properties of the amyloid β-protein. J. Neurochem. 74: 22092212.
  • Monti, M., Garolla di Bard, B.L., Calloni, G., Chiti, F., Amoresano, A., Ramponi, G., and Pucci, P. 2004. The regions of the sequence most exposed to the solvent within the amyloidogenic state of a protein initiate the aggregation process. J. Mol. Biol. 336: 253262.
  • Neira, J.L. and Fersht, A.R. 1996. An NMR study on the β-hairpin region of barnase. Fold. Des. 1: 231241.
  • Nilsberth, C., Westlind-Danielsson, A., Eckman, C.B., Condron, M.M., Axelman, K., Forsell, C., Stenh, C., Luthman, J., Teplow, D.B., Younkin, S.G., et al. 2001. The “Arctic” APP mutation (E693G) causes Alzheimer's disease by enhanced Aβ protofibril formation. Nat. Neurosci. 4: 887893.
  • Oda, T., Wals, P., Osterburg, H.H., Johnson, S.A., Pasinetti, G.M., Morgan, T.E., Rozovsky, I., Stine, W.B., Snyder, S.W., Holzman, T.F., et al. 1995. Clusterin (ApoJ) alters the aggregation of amyloid β-peptide (Aβ1–42) and forms slowly sedimenting Aβ complexes that cause oxidative stress. Exp. Neurol. 136: 2231.
  • Päiviö, A., Jarvet, J., Graslund, A., Lannfelt, L., and Westlind-Danielsson, A. 2004. Unique physicochemical profile of β-amyloid peptide variant Aβ1–40E22G protofibrils: Conceivable neuropathogen in Arctic mutant carriers. J. Mol. Biol. 339: 145159.
  • Palmblad, M., Westlind-Danielsson, A., and Bergquist, J. 2002. Oxidation of methionine 35 attenuates formation of amyloid β-peptide 1–40 oligomers. J. Biol. Chem. 277: 1950619510.
  • Petkova, A.T., Ishii, Y., Balbach, J.J., Antzutkin, O.N., Leapman, R.D., Delaglio, F., and Tycko, R. 2002. A structural model for Alzheimer's β-amyloid fibrils based on experimental constraints from solid state NMR. Proc. Natl. Acad. Sci. 99: 1674216747.
  • Polverino de Laureto, P., Taddei, N., Frare, E., Capanni, C., Costantini, S., Zurdo, J., Chiti, F., Dobson, C.M., and Fontana, A. 2003. Protein aggregation and amyloid fibril formation by an SH3 domain probed by limited proteolysis. J. Mol. Biol. 334: 129141.
  • Roberts, G.C.K. 1993. NMR of macromolecules: a practical approach. IRL Press/Oxford University Press, Oxford.
  • Schechter, I. and Berger, A. 1967. On the size of the active site in proteases. I. Papain. Biochem. Biophys. Res. Commun. 27: 157162.
  • Sciarretta, K.L., Gordon, D.J., Petkova, A.T., Tycko, R., and Meredith, S.C. 2005. Aβ40-lactam(D23/K28) models a conformation highly favorable for nucleation of amyloid. Biochemistry. (in press).
  • Seilheimer, B., Bohrmann, B., Bondolfi, L., Muller, F., Stuber, D., and Döbeli, H. 1997. The toxicity of the Alzheimer's β-amyloid peptide correlates with a distinct fiber morphology. J. Struct. Biol. 119: 5971.
  • Seubert, P., Vigo-Pelfrey, C., Esch, F., Lee, M., Dovey, H., Davis, D., Sinha, S., Schlossmacher, M.G., Whaley, J., Swindlehurst, C., et al. 1992. Isolation and quantitation of soluble Alzheimer's β-peptide from biological fluids. Nature 359: 325327.
  • Shao, H.Y., Jao, S.C., Ma, K., and Zagorski, M.G. 1999. Solution structures of micelle-bound amyloid β-(1–40) and β-(1–42) peptides of Alzheimer's disease. J. Mol. Biol. 285: 755773.
  • Shoji, M., Golde, T.E., Ghiso, J., Cheung, T.T., Estus, S., Shaffer, L.M., Cai, X., McKay, D.M., Tintner, R., Frangione, B., et al. 1992. Production of the Alzheimer amyloid β protein by normal proteolytic processing. Science 258: 126129.
  • Snyder, S.W., Ladror, U.S., Wade, W.S., Wang, G.T., Barrett, L.W., Matayoshi, E.D., Huffaker, H.J., Krafft, G.A., and Holzman, T.F. 1994. Amyloid-β aggregation: Selective inhibition of aggregation in mixtures of amyloid with different chain lengths. Biophys. J. 67: 12161228.
  • Sorimachi, K., Craik, D.J., Lloyd, E.J., Beyreuther, K., and Masters, C.L. 1990. Identification of a β-turn in the tertiary structure of a peptide fragment of the Alzheimer amyloid protein. Biochem. Int. 22: 447454.
  • Soto, C., Castaño, E.M., Frangione, B., and Inestrosa, N.C. 1995. The α-helical to β-strand transition in the amino-terminal fragment of the amyloid β-peptide modulates amyloid formation. J. Biol. Chem. 270: 30633067.
  • Sreerama, N. and Woody, R.W. 2000. Estimation of protein secondary structure from circular dichroism spectra: Comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. Anal. Biochem. 287: 252260.
  • Sticht, H., Bayer, P., Willbold, D., Dames, S., Hilbich, C., Beyreuther, K., Frank, R.W., and Rosch, P. 1995. Structure of amyloid A4-(1–40)- peptide of Alzheimer's disease. Eur. J. Biochem. 233: 293298.
  • Sun, X.D., Mo, Z.L., Taylor, B.M., and Epps, D.E. 2003. A slowly formed transient conformer of Aβ(1–40) is toxic to inward channels of dissociated hippocampal and cortical neurons of rats. Neurobiol. Dis. 14: 567578.
  • Tagliavini, F., Rossi, G., Padovani, A., Magoni, M., Andora, G., Sgarzi, M., Bizzi, A., Savioardo, M., Carella, F., Morbin, M., et al. 1999. A new βPP mutation related to hereditary cerebral hemorrhage. Alzheimer's Rep. (Suppl.) 2: S28.
  • Taylor, B.M., Sarver, R.W., Fici, G., Poorman, R.A., Lutzke, B.S., Molinari, A., Kawabe, T., Kappenman, K., Buhl, A.E., and Epps, D.E. 2003. Spontaneous aggregation and cytotoxicity of the β-amyloid Aβ1–40: A kinetic model. J. Protein Chem. 22: 3140.
  • Teplow, D.B. 1998. Structural and kinetic features of amyloid β-protein fibrillogenesis. Amyloid 5: 121142.
  • Teplow, D.B., Lomakin, A., Benedek, G.B., Kirschner, D.A., and Walsh, D.M. 1997. Effects of β-protein mutations on amyloid fibril nucleation and elongation. In Alzheimer's disease: Biology, diagnosis and therapeutics (eds. K.Iqbal et al.), pp. 311319. John Wiley & Sons Ltd., Chichester, England.
  • Tsubuki, S., Takaki, Y., and Saido, T.C. 2003. Dutch, Flemish, Italian, and Arctic mutations of APP and resistance of Aβ to physiologically relevant proteolytic degradation. Lancet 361: 19571958.
  • Tycko, R. 2004. Progress towards a molecular-level structural understanding of amyloid fibrils. Curr. Opin. Struct. Biol. 14: 18.
  • Urbanc, B., Cruz, L., Yun, S., Buldyrev, S.V., Bitan, G., Teplow, D.B., and Stanley, H.E. 2004. In silico study of amyloid β-protein folding and oligomerization. Proc. Natl. Acad. Sci. 101: 1734517350.
  • Walsh, D.M., Lomakin, A., Benedek, G.B., Condron, M.M., and Teplow, D.B. 1997. Amyloid β-protein fibrillogenesis—Detection of a protofibrillar intermediate. J. Biol. Chem. 272: 2236422372.
  • Walsh, D.M., Hartley, D.M., Kusumoto, Y., Fezoui, Y., Condron, M.M., Lomakin, A., Benedek, G.B., Selkoe, D.J., and Teplow, D.B. 1999. Amyloid β-protein fibrillogenesis—Structure and biological activity of protofibrillar intermediates. J. Biol. Chem. 274: 2594525952.
  • Walsh, D.M., Klyubin, I., Fadeeva, J.V., Cullen, W.K., Anwyl, R., Wolfe, M.S., Rowan, M.J., and Selkoe, D.J. 2002. Naturally secreted oligomers of amyloid β protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416: 535539.
  • Watson, A.A., Fairlie, D.P., and Craik, D.J. 1998. Solution structure of methionine-oxidized amyloid β-peptide (1–40)—Does oxidation affect conformational switching? Biochemistry 37: 1270012706.
  • Williams, A.D., Portelius, E., Kheterpal, I., Guo, J.-T., Cook, K.D., Xu, Y., and Wetzel, R. 2004. Mapping Aβ amyloid fibril secondary structure using scanning proline mutagenesis. J. Mol. Biol. 335: 833842.
  • Wisniewski, T., Ghiso, J., and Frangione, B. 1991. Peptides homologous to the amyloid protein of Alzheimer's disease containing a glutamine for glutamic acid substitution have accelerated amyloid fibril formation. Biochem. Biophys. Res. Commun. 179: 12471254.
  • Wurth, C., Guimard, N.K., and Hecht, M.H. 2002. Mutations that reduce aggregation of the Alzheimer's Aβ42 peptide: An unbiased search for the sequence determinants of Aβ amyloidogenesis. J. Mol. Biol. 319: 12791290.
  • Wüthrich, K. 1986. NMR of proteins and nucleic acids. John Wiley & Sons, New York.
  • Younkin, S.G. 1995. Evidence that Aβ42 is the real culprit in Alzheimer's disease. Ann. Neurol. 37: 287288.
  • Zagorski, M.G., Shao, H., Ma, K., Yang, J., Li, H., Zeng, H., Zhang, Y., and Papolla, M. 2000. Aβ(1–40) and Aβ(1–42) adopt remarkably stable monomeric and extended structures in water solution at neutral pH. Neurobiol. Aging 21: S10S11 (Abstract 48).
  • Zhang, S., Iwata, K., Lachenmann, M.J., Peng, J.W., Li, S., Stimson, E.R., Lu, Y., Felix, A.M., Maggio, J.E., and Lee, J.P. 2000. The Alzheimer's peptide Aβ adopts a collapsed coil structure in water. J. Struct. Biol. 130: 130141.