SEARCH

SEARCH BY CITATION

References

  • Abe, A., Saeki, K., Yasunaga, T., and Wakabayashi, T. 2000. Acetylation at the N-terminus of actin strengthens weak interaction between actin and myosin. Biochem. Biophys. Res. Commun. 268: 1419.
  • Adachi, K., Yamaguchi, T., Yang, Y., Konitzer, P.T., Pang, J., Reddy, K.S., Ivanova, M., Ferrone, F., and Surrey, S. 2000. Expression of functional soluble human β-globin chains of hemoglobin in bacteria. Protein Expr. Purif. 20: 3744.
  • Belagaje, R.M., Reams, S.G., Ly, S.C., and Prouty, W.F. 1997. Increased production of low molecular weight recombinant proteins in Escherichia coli.. Protein Sci. 6: 19531962.
  • Ben-Bassat, A., Bauer, K., Chang, S.Y., Myambo, K., Boosman, A., and Chang, S. 1987. Processing of the initiation methionine from proteins: Properties of the Escherichia coli methionine aminopeptidase and its gene structure. J. Bacteriol. 169: 751757.
  • Boix, E., Wu, Y., Vasandani, V.M., Saxena, S.K., Ardelt, W., Ladner, J., and Youle, R.J. 1996. Role of the N terminus in RNase A homologues: Differences in catalytic activity, ribonuclease inhibitor interaction and cytotoxicity. J. Mol. Biol. 257: 9921007.
  • Busby, W.H.Jr., Quackenbush, G.E., Humm, J., Youngblood, W.W., and Kizer, J.S. 1987. An enzyme(s) that converts glutaminyl-peptides into pyroglutamyl-peptides. Presence in pituitary, brain, adrenal medulla, and lymphocytes. J. Biol. Chem. 262: 85328536.
  • Chang, S.Y., McGary, E.C., and Chang, S. 1989. Methionine aminopeptidase gene of Escherichia coli is essential for cell growth. J. Bacteriol. 171: 40714072.
  • Chen, S., Vetro, J.A., and Chang, Y.H. 2002. The specificity in vivo of two distinct methionine aminopeptidases in Saccharomyces cerevisiae. Arch. Biochem. Biophys. 398: 8793.
  • Endo, S., Yamamoto, Y., Sugawara, T., Nishimura, O., and Fujino, M. 2001. The additional methionine residue at the N-terminus of bacterially expressed human interleukin-2 affects the interaction between the N- and C-termini. Biochemistry 40: 914919.
  • Fischer, W.H. and Spiess, J. 1987. Identification of a mammalian glutaminyl cyclase converting glutaminyl into pyroglutamyl peptides. Proc. Natl. Acad. Sci. 84: 36283632.
  • Hirel, P.H., Schmitter, M.J., Dessen, P., Fayat, G., and Blanquet, S. 1989. Extent of N-terminal methionine excision from Escherichia coli proteins is governed by the side-chain length of the penultimate amino acid. Proc. Natl. Acad. Sci. 86: 82478251.
  • Huang, H.C., Wang, S.C., Leu, Y.J., Lu, S.C., and Liao, Y.D. 1998. The Rana catesbeiana rcr gene encoding a cytotoxic ribonuclease. Tissue distribution, cloning, purification, cytotoxicity, and active residues for RNase activity. J. Biol. Chem. 273: 63956401.
  • Hwang, D.D., Liu, L.F., Kuan, I.C., Lin, L.Y., Tam, T.C., and Tam, M.F.1999. Co-expression of glutathione S-transferase with methionine aminopeptidase: A system of producing enriched N-terminal processed proteins in Escherichia coli. Biochem. J. 338(Pt. 2): 335342.
  • Ishitani, M., Liu, J., Halfter, U., Kim, C.S., Shi, W., and Zhu, J.K. 2000. SOS3 function in plant salt tolerance requires N-myristoylation and calcium binding. Plant Cell 12: 16671678.
  • Leu, Y.J., Chern, S.S., Wang, S.C., Hsiao, Y.Y., Amiraslanov, I., Liaw, Y.C., and Liao, Y.D. 2003. Residues involved in the catalysis, base specificity, and cytotoxicity of ribonuclease from Rana catesbeiana based upon mutagenesis and X-ray crystallography. J. Biol. Chem. 278: 73007309.
  • Li, X. and Chang, Y.H. 1995. Amino-terminal protein processing in Saccharomyces cerevisiae is an essential function that requires two distinct methionine aminopeptidases. Proc. Natl. Acad. Sci. 92: 1235712361.
  • Liao, Y.D. and Wang, J.J. 1994. Yolk granules are the major compartment for bullfrog (Rana catesbeiana) oocyte-specific ribonuclease. Eur. J. Biochem. 222: 215220.
  • Liao, Y.D., Huang, H.C., Leu, Y.J., Wei, C.W., Tang, P.C., and Wang, S.C. 2000. Purification and cloning of cytotoxic ribonucleases from Rana catesbeiana (bullfrog). Nucleic Acids Res. 28: 40974104.
  • Liao, Y.D., Wang, S.C., Leu, Y.J., Wang, C.F., Chang, S.T., Hong, Y.T., Pan, Y.R., and Chen, C. 2003. The structural integrity exerted by N-terminal pyroglutamate is crucial for the cytotoxicity of frog ribonuclease from Rana pipiens. Nucleic Acids Res. 31: 52475255.
  • Lowther, W.T. and Matthews, B.W. 2000. Structure and function of the methionine aminopeptidases. Biochim. Biophys. Acta 1477: 157167.
  • Lowther, W.T., Orville, A.M., Madden, D.T., Lim, S., Rich, D.H., and Matthews, B.W. 1999. Escherichia coli methionine aminopeptidase: Implications of crystallographic analyses of the native, mutant, and inhibited enzymes for the mechanism of catalysis. Biochemistry 38: 76787688.
  • Moerschell, R.P., Hosokawa, Y., Tsunasawa, S., and Sherman, F. 1990. The specificities of yeast methionine aminopeptidase and acetylation of amino-terminal methionine in vivo. Processing of altered iso-1-cytochromes c created by oligonucleotide transformation. J. Biol. Chem. 265: 1963819643.
  • Notomista, E., Cafaro, V., Fusiello, R., Bracale, A., D'Alessio, G., and Di Donato, A. 1999. Effective expression and purification of recombinant on-conase, an antitumor protein. FEBS Lett. 463: 211215.
  • Prchal, J.T., Cashman, D.P., and Kan, Y.W. 1986. Hemoglobin Long Island is caused by a single mutation (adenine to cytosine) resulting in a failure to cleave amino-terminal methionine. Proc. Natl. Acad. Sci. 83: 2427.
  • Roderick, S.L. and Matthews, B.W. 1993. Structure of the cobalt-dependent methionine aminopeptidase from Escherichia coli: A new type of proteolytic enzyme. Biochemistry 32: 39073912.
  • Shapiro, R., Harper, J.W., Fox, E.A., Jansen, H.W., Hein, F., and Uhlmann, E. 1988. Expression of Met-(−1) angiogenin in Escherichia coli: Conversion to the authentic less than Glu-1 protein. Anal. Biochem. 175: 450461.
  • Tahirov, T.H., Oki, H., Tsukihara, T., Ogasahara, K., Yutani, K., Ogata, K., Izu, Y., Tsunasawa, S., and Kato, I. 1998. Crystal structure of methionine aminopeptidase from hyperthermophile, Pyrococcus furiosus. J. Mol. Biol. 284: 101124.
  • Tobias, J.W., Shrader, T.E., Rocap, G., and Varshavsky, A. 1991. The N-end rule in bacteria. Science 254: 13741377.
  • Varshavsky, A. 1996. The N-end rule: Functions, mysteries, uses. Proc. Natl. Acad. Sci. 93: 1214212149.
  • Vetro, J.A. and Chang, Y.H. 2002. Yeast methionine aminopeptidase type 1 is ribosome-associated and requires its N-terminal zinc finger domain for normal function in vivo. J. Cell. Biochem. 85: 678688.
  • Walker, K.W. and Bradshaw, R.A. 1999. Yeast methionine aminopeptidase I. Alteration of substrate specificity by site-directed mutagenesis. J. Biol. Chem. 274: 1340313409.
  • Wilkins, M.R., Gasteiger, E., Bairoch, A., Sanchez, J.C., William, K.L., Appel, R.D., and Hochstrsser, D.F.1998. Protein identification and analysis tools in the ExPASy Server. Humana Press, Totowa, NJ.
  • Wu, S., Gupta, S., Chatterjee, N., Hileman, R.E., Kinzy, T.G., Denslow, N.D., Merrick, W.C., Chakrabarti, D., Osterman, J.C., and Gupta, N.K. 1993. Cloning and characterization of complementary DNA encoding the eukaryotic initiation factor 2-associated 67-kDa protein (p67). J. Biol. Chem. 268: 1079610801.