SEARCH

SEARCH BY CITATION

References

  • Altamirano, M., Golbik, R., Zahn, R., Buckle, A., and Fersht, A. 1997. Refolding chromatography with immobilized mini-chaperones. Proc. Natl. Acad. Sci. 94: 35763578.
  • Armstrong, N., de Lencastre, A., and Gouaux, E. 1999. A new protein folding screen: Application to the ligand binding domains of a glutamate and kainate receptor and to lysozyme and carbonic anhydrase. Protein Sci. 8: 14751483.
  • Audic, S., Lopez, F., Claverie, J., Poirot, O., and Abergel, C. 1997. SAmBA: An interactive software for optimizing the design of biological macromolecules crystallization experiments. Proteins 29: 252257.
  • Camus, J., Pryor, M., Medigue, C., and Cole, S. 2002. Re-annotation of the genome sequence of Mycobacterium tuberculosis H37Rv. Microbiology 148: 29672973.
  • Canaan, S., Maurin, D., Chahinian, H., Pouilly, B., Durrousseau, C., Frassinetti, F., Scappucini-Calvo, L., Cambillau, C., and Bourne, Y.2004. Expression and characterization of the protein Rv1399c from Mycobacterium tuberculosis: A novel carboxyl esterase structurally related to the HSL family.
  • Chen, G. and Gouaux, E. 1997. Overexpression of a glutamate receptor (GluR2) ligand binding domain in Escherichia coli: Application of a novel protein folding screen. Proc. Natl. Acad. Sci. 94: 1343113436.
  • Cole, S.T., Brosch, R., Parkhill, J., Garnier, T., Churcher, C., Harris, D., Gor-don, S.V., Eiglmeier, K., Gas, S., Barry 3rd, C.E., et al. 1998. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393: 537544.
  • De Bernardez-Clark, E. 1998. Refolding of recombinant proteins. Curr. Opin. Biotechnol. 9: 157163.
  • Expert-Bezancon, N., Rabilloud, T., Vuillard, L., and Goldberg, M. 2003. Physical-chemical features of non-detergent sulfobetaines active as protein-folding helpers. Biophys. Chem. 100: 469479.
  • Karaveg, K., Liu, Z., Tempel, W., Doyle, R., Rose, J., and Wang, B. 2003. Crystallization and preliminary X-ray diffraction analysis of lectin-1 from Pseudomonas aeruginosa. Acta Crystallogr. D Biol Crystallogr. 59: 12411242.
  • Lindwall, G., Chau, M., Gardner, S., and Kohlstaedt, L. 2000. A sparse matrix approach to the solubilization of overexpressed proteins. Protein Eng. 13: 6771.
  • Maxwell, K., Bona, D., Liu, C., Arrowsmith, C., and Edwards, A. 2003. Refolding out of guanidine hydrochloride is an effective approach for high-throughput structural studies of small proteins. Protein Sci. 12: 20732080.
  • Menzella, H., Gramajo, H., and Ceccarelli, E. 2002. High recovery of prochymosin from inclusion bodies using controlled air oxidation. Protein Expr. Purif. 25: 248255.
  • Mukhopadhyay, A. 1997. Inclusion bodies and purification of proteins in biologically active forms. Adv. Biochem. Eng. Biotechnol. 56: 61109.
  • Patra, A., Mukhopadhyay, R., Mukhija, R., Krishnan, A., Garg, L., and Panda, A. 2000. Optimization of inclusion body solubilization and renaturation of recombinant human growth hormone from Escherichia coli.. Protein Expr. Purif. 18: 182192.
  • Qoronfleh, W.2004. “Misfolded proteins? Inclusion bodies? Restoring protein function with the Pro-Matrix protein refolding system.” Paper presented at the PEPTALK-Protein Expression meeting, San Diego, CA. http://www.chipeptalk.com.
  • Rudolph, R. and Lilie, H. 1996. In vitro folding of inclusion body proteins. FASEB J. 10: 4956.
  • Scheich, C., Niesen, F., Seckler, R., and Bussow, K. 2004. An automated in vitro protein folding screen applied to a human dynactin subunit. Protein Sci. 13: 370380.
  • Sijwali, P., Brinen, L., and Rosenthal, P. 2001. Systematic optimization of expression and refolding of the Plasmodium falciparum cysteine protease falcipain-2. Protein Expr. Purif. 22: 128134.
  • St. John, R., Carpenter, J., and Randolph, T. 1999. High pressure fosters protein refolding from aggregates at high concentrations. Proc. Natl. Acad. Sci. 96: 1302913033.
  • Stempfer, G., Holl-Neugebauer, B., and Rudolph, R. 1996. Improved refolding of an immobilized fusion protein. Nat. Biotechnol. 14: 329334.
  • Stoscheck, C.M. 1990. Guide to protein purification: Quantitation of protein. Methods Enzymol. 182: 5068.
  • Sulzenbacher, G., Gruez, A., Roig-Zamboni, V., Spinelli, S., Valencia, C., Pagot, F., Vincentelli, R., Bignon, C., Salomoni, A., Grisel, S., et al. 2002. A medium-throughput crystallization approach. Acta Crystallogr. D Biol. Crystallogr. 58: 21092115.
  • Trésaugues, L., Collinet, B., Minard, P., Henkes, G., Aufrère, R., Blondeau, K., Liger, D., Zhou, C.-Z., Janin, J., van Tilbeurgh, H., et al. 2004. Refolding strategies from inclusion bodies in a structural genomics project. J. Struct. Funct. Gernomics 5: 195204.
  • Umetsu, M., Tsumoto, K., Hara, M., Ashish, K., Goda, S., Adschiri, T., and Kumagai, I. 2003. How additives influence the refolding of immunoglobulin-folded proteins in a stepwise dialysis system. Spectroscopic evidence for highly efficient refolding of a single-chain Fv fragment. J. Biol. Chem. 278: 89798987.
  • Vincentelli, R., Bignon, C., Gruez, A., Canaan, S., Sulzenbacher, G., Tegoni, M., Campanacci, V., and Cambillau, C. 2003. Medium-scale structural genomics: Strategies for protein expression and crystallization. Acc. Chem. Res. 36: 165172.
  • Vinogradov, A., Kudryashova, E., Levashov, A., and van Dongen, W. 2003. Solubilization and refolding of inclusion body proteins in reverse micelles. Anal. Biochem. 320: 234238.
  • Vuillard, L., Rabilloud, T., and Goldberg, M. 1998. Interactions of non-detergent sulfobetaines with early folding intermediates facilitate in vitro protein renaturation. Eur. J. Biochem. 256: 128135.
  • Wei, C., Tang, B., Zhang, Y., and Yang, K. 1999. Oxidative refolding of recombinant prochymosin. Biochem. J. 340: 345351.