SEARCH

SEARCH BY CITATION

References

  • Auger, I. and Roudier, J. 1997. A function for the QKRAA amino acid motif: Mediating binding of DnaJ to DnaK. Implications for the association of rheumatoid arthritis with HLA-DR4. J. Clin. Invest. 99: 18181822.
  • Berjanskii, M.V., Riley, M.I., Xie, A., Semenchenko, V., Folk, W.R., and Van Doren, S.R. 2000. NMR structure of the N-terminal J domain of murine polyomavirus T antigens. J. Biol. Chem. 275: 3609436103.
  • Berjanskii, M.V., Riley, M.I., and Van Doren, S.R. 2002. Hsc70-interacting HPD loop of the J domain of polyomavirus T antigens fluctuates in ps to ns and μs to ms. J. Mol. Biol. 321: 503516.
  • Bolliger, L., Deloche, O., Glick, B.S., Georgopoulos, C., Jenö, P., Kronidou, N., Horst, M., Morishima, N., and Schatz, G. 1994. A mitochondrial homologue of bacterial GrpE interacts with mitochondrial hsp70 and is essential for viability. EMBO J. 13: 19982006.
  • Bork, P., Sander, C., Valencia, A., and Bukau, B. 1992. A module of the DnaJ heat shock proteins found in malaria parasites. Trends Biochem. Sci. 17: 129.
  • Brodsky, J.L. and Pipas, J.M. 1998. Polyomavirus T antigens: Molecular chaperones for multiprotein complexes. J. Virol. 72: 53295334.
  • Campbell, K.S., Mullane, K.P., Aksoy, I.A., Stubdal, H., Zalvide, J., Pipas, J.M., Silver, P.A., Roberts, T.M., Schaffhausen, B.S., and DeCaprio, J.A. 1997. DnaJ/hsp40 chaperone domain of SV40 large T antigen promotes efficient viral DNA replication. Genes & Dev. 11: 10981110.
  • Chamberlain, L.H. and Burgoyne, R.D. 1997. The molecular chaperone function of the secretory vesicle cysteine string protein. J. Biol. Chem. 272: 3142031426.
  • Cheetham, M.E. and Caplan, A.J. 1998. Structure, function and evolution of DnaJ: Conservation and adaption of chaperone function. Cell Stress Chap. 3: 2836.
  • Cheetham, M.E., Brion, J-P., and Anderton, B.H. 1992. Human homologues of the bacterial heat-shock protein DnaJ are preferentially expressed in neurons. Biochemistry 284: 469476.
  • Chevalier, M., Rhee, H., Elguindi, E.C., and Blond, S.Y. 2000. Interaction of murine BiP/Grp78 with the DnaJ homologue MTJ1. J. Biol. Chem. 275: 1962019627.
  • Clarke, D.J., Holland, I.B., and Jacq, A. 1996. A novel DnaJ-like protein in Escherichia coli inserts into the cytoplasmic membrane with a type III topology. Mol. Microbiol. 20: 12731286.
  • Corsi, A.K. and Schekman, R. 1997. The lumenal domain of Sec63p stimulates the ATPase activity of BiP and mediates BiP recruitment to the translocon in Saccharomyces cerevisiae. J. Cell Biol. 137: 14831493.
  • Cunnea, P.M., Miranda-Vizuete, A., Bertoli, G., Simmen, T., Damdimopoulos, A.E., Hermann, S., Leinonen, S., Huikko, M.P., Gustafsson, J.-Å., Sitia, R., et al. 2003. ERdj5, an endoplasmic reticulum ER-resident protein containing DnaJ and thioredoxin domains, is expressed in secretory cells or following ER stress. J. Biol. Chem. 278: 10591066.
  • Cupp-Vickery, J.R. and Vickery, L.E. 1997. Crystallization and preliminary X-ray crystallographic properties of Hsc20: A J-motif co-chaperone protein from Escherichia coli. Protein Sci. 6: 20282030.
  • Cupp-Vickery, J.R. and Vickery, L.E. 2000. Crystal structure of Hsc20: A J-type co-chaperone from Escherichia coli. J. Mol. Biol. 304: 835845.
  • Cyr, D.M., Langer, T., and Douglas, M.G. 1994. DnaJ-like proteins: Molecular chaperones and specific regulators of Hsp70. Trends Biochem. Sci. 19: 176181.
  • Davis, J.E., Voisine, C., and Craig, E.A. 1999. Intragenic suppressors of Hsp70 mutants: Interplay between the ATPase-and peptide-binding domains. Proc. Natl. Acad. Sci. 96: 92699276.
  • Deloche, O., Kelley, W.L., and Georgopoulos, C. 1997. Structure-function analyses of Ssc1p, Mdj1p and Mge1p Saccharomyces cerevisiae mitochondrial proteins in Escherichia coli. J. Bacteriol. 179: 60666075.
  • Demand, J., Lüders, J., and Höhfeld, J. 1998. The carboxy-terminal domain of Hsc70 provides binding sited for a distinct set of chaperone co-factors. Mol. Cell. Biol. 18: 20232028.
  • Fan, C.Y., Lee, S., Ren, H.Y., and Cyr, D.M. 2004. Exchangeable chaperone modules contribute to specification of type I and type II Hsp40 cellular function. Mol. Biol. Cell 15: 761773.
  • Fewell, S.W., Pipas, J.M., and Brodsky, J.L. 2002. Mutagenesis of a functional chimeric gene in yeast identifies mutations in the simian virus 40 large T antigen J domain. Proc. Natl. Acad. Sci. 99: 20022007.
  • Freeman, B.C., Myers, M.P., Schumacher, R., and Morimoto, R.I. 1995. Identification of a regulatory motif in Hsp70 that affects ATPase activity, substrate binding and interaction with HDJ-1. EMBO J. 14: 22812292.
  • Gässler, C.S., Buchberger, A., Laufer, T., Mayer, M.P., Schröder, H., Valencia, A., and Bukau, B. 1998. Mutations in the DnaK chaperone affecting interaction with the DnaJ cochaperone. Proc. Natl. Acad. Sci. 95: 1522915234.
  • Genevaux, P., Wawrzynáw, A., Zylicz, M., Georgopoulos, C., and Kelley, W.L. 2001. DjlA is a third DnaK co-chaperone of Escherichia coli, and DjlA-mediated induction of colanic acid capsule requires DjlA–DnaK interaction. J. Biol. Chem. 276: 79067912.
  • Genevaux, P., Schwager, F., Georgopoulos, C., and Kelley, W.L. 2002. Scanning mutagenesis identifies amino acid residues essential for the in vivo activity of the Escherichia coli DnaJ Hsp40 J domain. Genetics 162: 10451053.
  • Genevaux, P., Lang, F., Schwager, F., Vartikar, J.V., Rundell, K., Pipas, J.M., Georgopoulos, C., and Kelley, W.L. 2003. Simian virus 40 T antigens and J domains: Analysis of Hsp40 cochaperone functions in Escherichia coli. J. Virol. 77: 1070610713.
  • Gisler, S.M., Pierpaoli, E.V., and Christen, P. 1998. Catapult mechanism renders the chaperone action of Hsp70 unidirectional. J. Mol. Biol. 279: 833840.
  • Greene, M., Makos, K., and Landry, S.J. 1998. Role of the J-domain in the cooperation of Hsp40 with Hsp70. Proc. Natl. Acad. Sci. 95: 61086113.
  • Gruschus, J.M., Greene, L.E., Eisenberg E., and Ferretti J.A. 2004a. Experimentally biased model structure of the hsc70/auxilin complex: Substrate transfer and interdomain structural change. Protein Sci. 13: 20292044.
  • Gruschus, J.M., Han, C.J., Greener, T., Ferretti, J.A., Greene, L.E., and Eisenberg, E. 2004b. Structure of the functional fragment of auxilin required for catalytic uncoating of clathrin-coated vesicles. Biochemistry 43: 31113119.
  • Han, W. and Christen, P. 2003. Mechanism of the targeting action of DnaJ in the DnaK molecular chaperone system. J. Biol. Chem. 278: 1903819043.
  • Hennessy, F., Cheetham, M.E., Dirr, H.W., and Blatch, G.L. 2000. Analysis of the levels of conservation of the J domain among the various types of DnaJ-like proteins. Cell Stress Chap. 5: 347358.
  • Hennessy, F., Boshoff, A., and Blatch, G.L. 2005. Rational mutagenesis of the J domain identifies residues critical to the in vivo function of the Agrobacterium tumefaciens DnaJ. Int. J. Biochem. Cell Biol. 37: 177191.
  • Höhfeld, J., Minami, Y., and Hartl, F.-U. 1995. Hip, a novel cochaperone involved in the eukaryotic Hsc70/Hsp40 reaction cycle. Cell 83: 589598.
  • Hosoda, A., Kimata, Y., and Kohno, K. 2003. JPD1: A novel endoplasmic reticulum-resident protein containing both a BiP-interacting J-domain and thioredoxin-like motifs. J. Biol. Chem. 278: 26692676.
  • Huang, K., Flanagan, J.M., and Prestegard, J.H. 1998. The influence of C-terminal extension on the structure of the J domain in E. coli DnaJ. Protein Sci. 8: 203214.
  • Huang, K., Ghose, R., Flanagan, J.M. and Prestegard, J.H. 1999. Backbone dynamics of the N-terminal domain in E. coli DnaJ determined by 15N-and 13CO-relaxation measurements. Biochemistry 38: 1056710577.
  • Jiang, J., Taylor, A.B., Prasad, K., Ishikawa-Brush, Y., Hart, P.J., Lafer, E.M., and Sousa, R. 2003. Structure-function analysis of the auxilin J-domain reveals an extended Hsc70 interaction interface. Biochemistry 42: 57485753.
  • Johnson, J.L. and Craig, E.A. 2000. A role for the Hsp40 YDJ1 in repression of basal steroid receptor activity in yeast. Mol. Cell. Biol. 20: 30273036.
  • Jordan, R. and McMacken, R. 1995. Modulation of the ATPase activity of the molecular chaperone DnaK by peptides and the DnaJ and GrpE heat shock proteins. J. Biol. Chem. 270: 45634569.
  • Kabani, M., Beckerich, J.-M., and Brodsky, J.L. 2003. The yeast Sls1p and Fes1p proteins define a new family of Hsp70 nucleotide exchange factors. Curr. Genom. 4: 263273.
  • Karzai, A.W. and McMacken, R. 1996. A bipartite signalling mechanism involved in DnaJ-mediated activation of the Escherichia coli DnaK protein. J. Biol. Chem. 271: 1123611246.
  • Kelley, W.L. 1998. The J-domain family and the recruitment of chaperone power. Trends Biochem. Sci. 23: 222227.
  • Kelley, W.L. and Georgopoulos, C. 1997. The T/t common exon of simian virus 40, JC, and BK polyomavirus T antigens can functionally replace the J domain of the Escherichia coli DnaJ molecular chaperone. Proc. Natl. Acad. Sci. 94: 36793684.
  • Kim, H.-Y., Ahn, B.-Y., and Cho, Y. 2001. Structural basis for the inactivation of retinoblastoma tumor supressor by SV40 large T antigen. EMBO J. 20: 295304.
  • Kluck, C.J., Patzelt, H., Genevaux, P., Brehmer, D., Rist, W., Schneider- Mergener, J., Bukau, B., and Mayer, M.P. 2002. Structure-function analysis of HscC, the Escherichia coli member of a novel subfamily of specialized Hsp70 chaperones. J. Biol. Chem. 277: 4106041069.
  • Kraulis, P. 1991. Molscript: A programme to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24: 946950.
  • Kroczynska, B. and Blond, S.Y. 2001. Cloning and characterization of a new soluble murine J-domain protein that stimulates BiP, Hsc70 and DnaK ATPase activity with different efficiencies. Gene 273: 267274.
  • Landry, S.J. 2003. Structure and energetics of an allele-specific interaction between dnaJ and dnaK: Correlation of nuclear magnetic resonance chemical shift perturbations in the J-domain of Hsp40/DnaJ with binding affinity for the ATPase domain of Hsp70/DnaK. Biochemistry 42: 49264936.
  • Laufen, T., Mayer, M.P., Beisle, C., Klostermeier, D., Mogk, A., Reinstein, J., and Bukau, B. 1999. Mechanism of regulation of Hsp70 chaperones by DnaJ cochaperones. Proc. Natl. Acad. Sci. 96: 54525457.
  • Lelivelt, M.J. and Kawula, T.H. 1995. Hsc66, an Hsp homologue in Escherichia coli, is induced by cold shock and not by heat shock. J. Bacteriol. 177: 49004907.
  • Li, H., Söderbärg, K., Houshmand, H., You, Z.-Y., and Magnusson, G. 2001. Effect on polyomavirus T-antigen function of mutations in a conserved leucine-rich segment of the DnaJ domain. J. Virol. 75: 22532261.
  • Liberek, K., Marszalek, J., Ang, D., Georgopoulos, C., and Zylicz, M. 1991. Escherichia coli DnaJ and GrpE heat proteins jointly stimulate ATPase activity of DnaK. Proc. Natl. Acad. Sci. 88: 28742878.
  • Linke, K., Wolfram, T., Bussemer, J. and Jakob, U. 2003. The roles of the two zinc binding sites in DnaJ. J. Biol. Chem. 278: 4445744466.
  • Lu, Z. and Cyr, D.M. 1998. The conserved carboxyl terminus and zinc finger-like domain of the co-chaperone YDJ1 assist Hsp70 in protein folding. J. Biol. Chem. 273: 59705978.
  • Lyman, S.K. and Schekman, R. 1995. Interaction between BiP and Sec63p is required for the completion of protein translocation into the ER of Saccharomyces cerevisiae. J. Cell Biol. 131: 11631171.
  • Martinez-Yamout, M., Legge, G.B., Zhang, O., Wright, P.E. and Dyson, H.J. 2000. Solution structure of the cysteine-rich domain of the Escherichia coli chaperone protein DnaJ. J. Mol. Biol. 300: 805818.
  • Mayer, M.P., Laufen, T., Paal, K., McCarty, J.S., and Bukau, B. 1999. Investigation of the interaction between DnaK and DnaJ by surface plasmon resonance spectroscopy. J. Mol. Biol. 289: 11311144.
  • McCarty, J.S., Buchberger, A., Reinstein, J., and Bukau, B. 1995. The role of ATP in the functional cycle of the DnaK chaperone system. J. Mol. Biol. 249: 126137.
  • Michels, A.M., Kanon, B., Bensaude, O., and Kampinga, H.H. 1999. Heat shock proteins Hsp40 mutants inhibit Hsc70 in mammalian cells. J. Biol. Chem. 274: 3675736763.
  • Minami, Y., Höhfeld, J., Ohtsuka, K., and Hartl, F.-U. 1996. Regulation of the heat-shock protein 70 reaction cycle by the mammalian DnaJ homologue Hsp40. J. Biol. Chem. 271: 1961719624.
  • Misselwitz, B., Staeck, O., and Rapoport, T.A. 1998. J proteins catalytically activate Hsp70 molecules to trap a wide range of peptide sequences. Mol. Cell 2: 593603.
  • Moro, F., Fernández, V., and Muga, A. 2003. Interdomain interaction through helices A and B of DnaK peptide binding helices. FEBS Lett. 533: 119123.
  • Motohashi, K., Taguchi, H., Ishii, N., and Yoshida, M. 1994. Isolation of the stable hexameric DnaK–DnaJ complex from Thermus thermophilus. J. Biol. Chem. 269: 2707427079.
  • Motohashi, K., Yohda, M., Endo, I., and Yoshida, M. 1996. A novel factor required for the assembly of the DnaK and DnaJ chaperones of Thermus thermophilus. J. Biol. Chem. 271: 1734317348.
  • Nagata, H., Hansen, W.J., Freeman, B., and Welch, W.J. 1998. Mammalian cytosolic DnaJ homologues affect the hsp70 chaperone-substrate reaction cycle, but do not interact directly with nascent or newly synthesized proteins. Biochemistry 37: 69246938.
  • Ohki, M., Tamura, F., Nishimura, S., and Uchida, H. 1986. Nucleotide sequence of the Escherichia coli dnaJ gene and purification of the gene product. J. Biol. Chem. 261: 17781781.
  • Pellecchia, M., Szyperski, T., Wall, D., Georgopoulos, C., and Wüthrich, K 1996. NMR structure of the J-domain and the Gly/Phe-rich region of the Escherichia coli DnaJ chaperone. J. Mol. Biol. 260: 236250.
  • Pierpaoli, E.V., Sandmeier, E., Baici, A., Schönfeld, H.-J., Gisler, S., and Christen, P. 1997. The power stroke of the DnaK/DnaJ/GrpE molecular chaperone system. J. Mol. Biol. 269: 757768.
  • Pierpaoli, E.V., Gisler, S., and Christen, P. 1998. Sequence-specific rates of interaction of target peptides with the molecular chaperones DnaK and DnaJ. Biochemistry 37: 1674116748.
  • Qian, Y.Q., Patel, D., Hartl, F.-U., and McColl, D.J. 1996. Nucleic Magnetic Resonance solution structure of the human Hsp40 HDJ-1 J domain. J. Mol. Biol. 260: 224235.
  • Riley, M.I., Yoo, W., Mda, N.Y., and Folk, W.R. 1997. Tiny T antigen: An autonomous polyomavirus T antigen amino-terminal domain. J. Virol. 71: 60686074.
  • Russell, R., Karzai, A.W., Mehl, A.F., and McMacken, R. 1999. DnaJ dramatically stimulates ATP hydrolysis by DnaK: Insight into targeting of Hsp70 proteins to polypeptide substrates. Biochemistry 38: 41654176.
  • Schlenstedt, G., Harris, S., Risse, B., Lill, R., and Silver, P.A. 1995. A yeast DnaJ homologue, Scj1p, can function in the endoplasmic reticulum with BiP/Kar2p via a conserved domain that specifies interactions with Hsp70s. J. Cell Biol. 129: 979988.
  • Schumacher, R.J., Hansen, W.J., Freeman, B.C., Alnemri, E., Litwack, G., and Toft, D.O. 1996. Cooperative action of Hsp70, Hsp90 and DnaJ proteins in protein renaturation. Biochemistry 35: 1488914898.
  • Shomura, Y., Dragovic, Z., Chang, H.-C., Tzvetkov, N., Young, J.C., Brodsky, J.L., Guerriero, V., Hartl, F.-U., and Bracher, A. 2005. Regulation of Hsp70 by HspBP1. Structural analysis reveals an alternate mechanism for Hsp70 nucleotide exchange. Mol. Cell 17: 367379.
  • Silberg, J.J. and Vickery, L.E. 2000. Kinetic characterization of the ATPase cycle of the molecular chaperone Hsc66 from Escherichia coli. J. Biol. Chem. 275: 77797786.
  • Silberg, J.J., Hoff, K.G., and Vickery, L.E. 1998. The Hsc66–Hsc20 chaperone system in Escherichia coli: Chaperone activity and interactions with the DnaK–DnaJ–GrpE system. J. Bacteriol. 180: 66176624.
  • Stubdal, H., Zalvide, J., Campbell, K.S., Schweitzer, C., Roberts, T.M., and DeCaprio, J.A. 1997. Inactivation of pRB-related proteins p130 and p107 mediated by the J domain of Simian Virus 40 Large T antigen. Mol. Cell. Biol. 17: 49794990.
  • Suh, W.-C., Burkholder, W.F., Lu, C.Z., Zhao, X., Gottesman, M.E., and Gross, C.A. 1998. Interaction of the Hsp70 molecular chaperone, DnaK, with its cochaperone DnaJ. Proc. Natl. Acad. Sci. 95: 1522315228.
  • Suh, W.-C., Lu, C.Z., and Gross, C.A. 1999. Structural features required for the interaction of the Hsp70 molecular chaperone DnaK with its cochaperone DnaJ. J. Biol. Chem. 274: 3053430539.
  • Sullivan, C.S., Cantalupo, P., and Pipas, J.M. 2000a. The molecular chaperone activity of simian virus 40 large T antigen is required to disrupt Rb-E2F family complexes by an ATP-dependent mechanism. Mol. Cell. Biol. 20: 62336243.
  • Sullivan, C.S., Tremblay, J.D., Fewell, S.W., Lewis, J.A., Brodsky, J.L., and Pipas, J. 2000b. Species-specific elements in the large T antigen J domain are required for cellular transformation and DNA replication by Simian virus 40. Mol. Cell. Biol. 20: 57495757.
  • Szabo, A., Langer, T., Schröder, H., Flanagan, J., Flanagan, J., Bukau, B., and Hartl, F.-U. 1994. The ATP hydrolysis-dependent reaction cycle of the Escherichia coli Hsp70 system—DnaK, DnaJ and GrpE. Proc. Natl. Acad. Sci. 91: 1034510349.
  • Szyperski, T., Pellecchia, M., Wall, D., Georgopoulos, C., and Wuthrich, K. 1994. NMR structure determination of the Escherichia coli DnaJ molecular chaperone: Secondary structure and backbone fold of the N-terminal region (residues 2–108) containing the highly conserved J domain. Proc. Natl. Acad. Sci. 91: 1134311347.
  • Tsai, J. and Douglas, M.G. 1996. A conserved HPDsequence of the J-domain is neccessary for YDJ1 stimulation of Hsp70 ATPase activity at a site distinct from substrate binding. J. Biol. Chem. 271: 93479354.
  • Ueguchi, C., Kakeda, M., Yamada, H., and Mizuno, T. 1994. An analogue of the DnaJ molecular chaperone in Escherichia coli. Proc. Natl. Acad. Sci. 91: 10541058.
  • Ueguchi, C., Shiozawa, T., Kakeda, M., Yamada, H., and Mizuno, T. 1995. A study of the double mutation of dnaJ and cbpA, whose gene products function as molecular chaperones in Escherichia coli. J. Bacteriol. 177: 38943896.
  • Vickery, L.E., Silberg, J.J., and Ta, D.T. 1997. Hsc66 and Hsc20: A new heat shock cognate molecular chaperone system from Escherichia coli. Protein Sci. 6: 10471056.
  • Walsh, P., Bursac, D., Law, Y.C., Cyr, D., and Lithgow, T. 2004. The J-protein family: Modulating protein assembly, disassembly and translocation. EMBO Rep. 5: 567571.
  • Wegrzyn, A., Taylor, K., and Wegrzyn, G. 1996. The cbpA chaperone gene function compensates for dnaJ in plasmid replication during amino acid starvation of Esherichia coli. J. Bacteriol. 178: 58475849.
  • Wittung-Stafshede, P., Guidry, J., Horne, B.E., and Landry, S.J. 2003. The J domain of Hsp40 couples ATP hydrolysis to substrate capture in Hsp70. Biochemistry 42: 49374944.
  • Yan, W. and Craig, E.A. 1999. The glycine-phenylalanine-rich region determines the specificity of the yeast Hsp40 Sis1. Mol. Cell. Biol. 19: 77517758.
  • Yan, W., Gale, M.J.J., Tan, S.-L., and Katze, M.G. 2002. Inactivation of the PKR protein kinase and stimulation of mRNA translation by the cellular co-chaperone P58 IPK does not require J domain function. Biochemistry 41: 49384945.
  • Yoshimune, K., Yoshimura, T., Nakayama, T., Nishino, T., and Esaki, N. 2002. Hsc62, Hsc56 and GrpE, the third Hsp70 chaperone system of Escherichia coli. Biochem. Biophys. Res. Commun. 293: 13891395.
  • Zalvide, J., Stubdal, H., and DeCaprio, J.A. 1998. The J domain of Simian virus 40 Large T Antigen is required to functionally inactivate RB family proteins. Mol. Cell. Biol. 18: 14081415.