SEARCH

SEARCH BY CITATION

References

  • Berne, P.J. and Pecora, R. 1976. Dynamic light scattering. John Wiley and Sons, New York.
  • Byler, D.M. and Susi, H. 1986. Examination of the secondary structure of proteins by deconvolved FTIR spectra. Biopolymers 25: 469487.
  • Carlson, G.M. and Graves, D.J. 1976. Site of action and biphasic effect of neutral salts in the phosphorylase kinase reaction. Biochemistry 15: 44764481.
  • Chan, K.F. and Graves, D.J. 1982. Isolation and physicochemical properties of active complexes of rabbit muscle phosphorylase kinase. J. Biol. Chem. 257: 59395947.
  • Chothia, C., Levitt, M., and Richardson, D. 1977. Structure of proteins: Packing of α-helices and pleated sheets. Proc. Natl. Acad. Sci. 74: 41304134.
  • Cohen, P. 1973. The subunit structure of rabbit-skeletal-muscle phosphorylase kinase, and the molecular basis of its activation reactions. Eur. J. Biochem. 34: 114.
  • Dasgupta, M., Honeycutt, T., and Blumenthal, D.K. 1989. The γ-subunit of skeletal muscle phosphorylase kinase contains two noncontiguous domains that act in concert to bind calmodulin. J. Biol. Chem. 264: 1715617163.
  • Demchenko, A.P. 1986. Ultraviolet spectroscopy of proteins. Revision and English translation of the Russian ed. Springer-Verlag, Berlin, Germany.
  • Dimitrov, D. 1978. The influence of Ca2+ ions on the difference absorption spectra of phosphorylase kinase. Mol. Biol. Rep. 4: 2932.
  • Farrar, Y.J., Lukas, T.J., Craig, T.A., Watterson, D.M., and Carlson, G.M. 1993. Features of calmodulin that are important in the activation of the catalytic subunit of phosphorylase kinase. J. Biol. Chem. 268: 41204125.
  • Harris, W.R., Malencik, D.A., Johnson, C.M., Carr, S.A., Roberts, G.D., Byles, C.A., Anderson, S.R., Heilmeyer, L.M. Jr, Fischer, E.H., and Crabb, J.W. 1990. Purification and characterization of catalytic fragments of phosphorylase kinase γ subunit missing a calmodulin-binding domain. J. Biol. Chem. 265: 1174011745.
  • Henderson, S.J., Newsholme, P., Heidorn, D.B., Mitchell, R., Seeger, P.A., Walsh, D.A., and Trewhella, J. 1992. Solution structure of phosphorylase kinase studied using small-angle X-ray and neutron scattering. Biochemistry 31: 437442.
  • Hunter, R.J. 1981. Zeta potential in colloid science. Principles and applications. Academic Press, New York.
  • King, M.M. and Carlson, G.M. 1981. Synergistic activation by Ca2+ and Mg2+ as the primary cause for hysteresis in the phosphorylase kinase reactions. J. Biol. Chem. 256: 1105811064.
  • King, M.M., Carlson, G.M., and Haley, B.E. 1982. Photoaffinity labeling of the β subunit of phosphorylase kinase by 8-azidoadenosine 5′-triphosphate and its 2′,3′-dialdehyde derivative. J. Biol. Chem. 257: 1405814065.
  • Krebs, E.G. and Fischer, E.H. 1956. The phosphorylase b to a converting enzyme of rabbit skeletal muscle. Biochim. Biophys. Acta 20: 150157.
  • Krimm, S. and Bandekar, J. 1986. Vibrational spectroscopy and conformation of peptides, polypeptides, and proteins. Adv. Protein Chem. 38: 181364.
  • Levitt, M. and Chothia, C. 1976. Structural patterns in globular proteins. Nature 261: 552558.
  • Lindhout, D.A., Boyko, R.F., Corson, D.C., Li, M.X., and Sykes, B.D. 2005. The role of electrostatics in the interaction of the inhibitory region of troponin I with troponin C. Biochemistry 44: 1475014759.
  • Lobley, A., Whitmore, L., and Wallace, B.A. 2002. DICHROWEB: An interactive website for the analysis of protein secondary structure from circular dichroism spectra. Bioinformatics 18: 211212.
  • Mach, H. and Middaugh, C.R. 1994. Simultaneous monitoring of the environment of tryptophan, tyrosine, and phenylalanine residues in proteins by near-ultraviolet second-derivative spectroscopy. Anal. Biochem. 222: 323331.
  • Manavalan, P. and Johnson, C.M. 1983. Sensitivity of circular dichroism to protein structure class. Nature 305: 813832.
  • McClure, D. 2005. Rabbits. In Merck veterinary manual (ed. C.M.Kahn), p. 1571. Merck & Co. Inc, Whitehouse Station, NJ.
  • McNeil-Watson, F., Tscharnuter, W., and Miller, J. 1998. A new instrument for the measurement of very small electrophoretic mobilities using phase analysis light scattering (PALS). Colloids Surf. A 140: 5357.
  • Nadeau, O.W., Sacks, D.B., and Carlson, G.M. 1997. Differential affinity cross-linking of phosphorylase kinase conformers by the geometric isomers of phenylenedimaleimide. J. Biol. Chem. 272: 2619626201.
  • Nadeau, O.W., Traxler, K.W., Fee, L.R., Baldwin, B.A., and Carlson, G.M. 1999. Activators of phosphorylase kinase alter the cross-linking of its catalytic subunit to the C-terminal one-sixth of its regulatory α subunit. Biochemistry 38: 25512559.
  • Nadeau, O.W., Carlson, G.M., and Gogol, E.P. 2002. A Ca(2+)-dependent global conformational change in the 3D structure of phosphorylase kinase obtained from electron microscopy. Structure 10: 2332.
  • Nadeau, O.W., Gogol, E.P., and Carlson, G.M. 2005. Cryoelectron microscopy reveals new features in the three-dimensional structure of phosphorylase kinase. Protein Sci. 14: 914920.
  • Nadeau, O.W., Anderson, D.W., Yang, Q., Artigues, A., Paschall, J.E., Wyckoff, G.J., McClintock, J.L., and Carlson, G.M. 2007. Evidence for the location of the allosteric activation switch in the multisubunit phosphorylase kinase complex from mass spectrometric identification of chemically crosslinked peptides. J. Mol. Biol. 365: 14291445.
  • Norcum, M.T., Wilkinson, D.A., Carlson, M.C., Hainfeld, J.F., and Carlson, G.M. 1994. Structure of phosphorylase kinase. A three-dimensional model derived from stained and unstained electron micrographs. J. Mol. Biol. 241: 94102.
  • Owen, D.J., Noble, M.E., Garman, E.F., Papageorgiou, A.C., and Johnson, L.N. 1995. Two structures of the catalytic domain of phosphorylase kinase: An active protein kinase complexed with substrate analogue and product. Structure 3: 467482.
  • Paudel, H.K. and Carlson, G.M. 1990. Functional and structural similarities between the inhibitory region of troponin I coded by exon VII and the calmodulin-binding regulatory region of the catalytic subunit of phosphorylase kinase. Proc. Natl. Acad. Sci. 87: 72857289.
  • Priddy, T.S., MacDonald, B.A., Heller, W.T., Nadeau, O.W., Trewhella, J., and Carlson, G.M. 2005. Ca2+-induced structural changes in phosphorylase kinase detected by small-angle X-ray scattering. Protein Sci. 14: 10391048.
  • Ragone, R., Colonna, G., Balestrieri, C., Servillo, L., and Irace, G. 1984. Determination of tyrosine exposure in proteins by second-derivative spectroscopy. Biochemistry 23: 18711875.
  • Rice, N.A., Nadeau, O.W., Yang, Q., and Carlson, G.M. 2002. The calmodulin-binding domain of the catalytic γ subunit of phosphorylase kinase interacts with its inhibitory α subunit: Evidence for a Ca2+ sensitive network of quaternary interactions. J. Biol. Chem. 277: 1468114687.
  • Rosen, C.G. and Weber, G. 1969. Dimer formation from 1-amino-8-naphthalenesulfonate catalyzed by bovine serum albumin. A new fluorescent molecule with exceptional binding properties. Biochemistry 8: 39153920.
  • Shulman, R.G. 2005. Glycogen turnover forms lactate during exercise. Exerc. Sport Sci. Rev. 33: 157162.
  • Singh, T.J. and Wang, J.H. 1979. Stimulation of glycogen phosphorylase kinase from rabbit skeletal muscle by organic solvents. J. Biol. Chem. 254: 84668472.
  • Sreerama, N. and Woody, R.W. 2000. Estimation of protein secondary structure from circular dichroism spectra: Comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. Anal. Biochem. 287: 252260.
  • Steiner, R.F. and Sternberg, H. 1982. Properties of the complexes formed by 1-anilinonaphthalene-8-sulfonate with phosphorylase kinase and calmodulin. Biopolymers 21: 14111425.
  • Stryer, L. 1965. The interaction of a naphthalene dye with apomyoglobin and apohemoglobin. J. Mol. Biol. 13: 482495.
  • Susi, H. and Byler, D.M. 1986. Resolution-enhanced Fourier transform infrared spectroscopy of enzymes. Methods Enzymol. 130: 290311.
  • Traxler, K.W., Norcum, M.T., Hainfeld, J.F., and Carlson, G.M. 2001. Direct visualization of the calmodulin subunit of phosphorylase kinase via electron microscopy following subunit exchange. J. Struct. Biol. 135: 231238.
  • Trempe, M.R. and Carlson, G.M. 1987. Phosphorylase kinase conformers. Detection by proteases. J. Biol. Chem. 262: 43334340.
  • Trewhella, J., Liddle, W.K., Heidorn, D.B., and Strynadka, N. 1989. Calmodulin and troponin C structures studied by Fourier transform infrared spectroscopy: Effects of Ca2+ and Mg2+ binding. Biochemistry 28: 12941301.
  • Venien-Bryan, C., Lowe, E.M., Boisset, N., Traxler, K.W., Johnson, L.N., and Carlson, G.M. 2002. Three-dimensional structure of phosphorylase kinase at 22 Å resolution and its complex with glycogen phosphorylase b. Structure 10: 3341.
  • Vigil, D., Lin, J.H., Sotriffer, C.A., Pennypacker, J.K., McCammon, J.A., and Taylor, S.S. 2006. A simple electrostatic switch important in the activation of type I protein kinase A by cyclic AMP. Protein Sci. 15: 113121.
  • Weber, P.C., Lukas, T.J., Craig, T.A., Wilson, E., King, M.M., Kwiatkowski, A.P., and Watterson, D.M. 1989. Computational and site-specific mutagenesis analyses of the asymmetric charge distribution on calmodulin. Proteins 6: 7085.