SEARCH

SEARCH BY CITATION

References

  • Alonso, M.D., Lomako, J., Lomako, W.M., and Whelan, W.J. 1995. A new look at the biogenesis of glycogen. FASEB J. 9: 11261137.
  • Arabshahi, A., Brody, R.S., Smallwood, A., Tsai, T.C., and Frey, P.A. 1986. Galactose-1-phosphate uridylyltransferase. Purification of the enzyme and stereochemical course of each step of the double-displacement mechanism. Biochemistry 25: 55835589.
  • Aragao, D., Marques, A.R., Frazao, C., Enguita, F.J., Carrondo, M.A., Fialho, A.M., Sa-Correia, I., and Mitchell, E.P. 2006. Cloning, expression, purification, crystallization and preliminary structure determination of glucose-1-phosphate uridylyltransferase (UgpG) from Sphingomonas elodea ATCC 31461 bound to glucose-1-phosphate. Acta Crystallograph. Sect. F Struct. Biol. Cryst. Commun. 62: 930934.
  • Barton, W.A., Lesniak, J., Biggins, J.B., Jeffrey, P.D., Jiang, J., Rajashankar, K.R., Thorson, J.S., and Nikolov, D.B. 2001. Structure, mechanism and engineering of a nucleotidylyltransferase as a first step toward glycorandomization. Nat. Struct. Biol. 8: 545551.
  • Blankenfeldt, W., Asuncion, M., Lam, J.S., and Naismith, J.H. 2000. The structural basis of the catalytic mechanism and regulation of glucose-1-phosphate thymidylyltransferase (RmlA). EMBO J. 19: 66526663.
  • Bonofiglio, L., Garcia, E., and Mollerach, M. 2005. Biochemical characterization of the pneumococcal glucose 1-phosphate uridylyltransferase (GalU) essential for capsule biosynthesis. Curr. Microbiol. 51: 217221.
  • Brown, K., Pompeo, F., Dixon, S., Mengin-Lecreulx, D., Cambillau, C., and Bourne, Y. 1999. Crystal structure of the bifunctional N-acetylglucosamine 1-phosphate uridyltransferase from Escherichia coli: A paradigm for the related pyrophosphorylase superfamily. EMBO J. 18: 40964107.
  • Flores-Diaz, M., Alape-Giron, A., Persson, B., Pollesello, P., Moos, M., von Eichel-Streiber, C., Thelestam, M., and Florin, I. 1997. Cellular UDP-glucose deficiency caused by a single point mutation in the UDP-glucose pyrophosphorylase gene. J. Biol. Chem. 272: 2378423791.
  • Genevaux, P., Bauda, P., DuBow, M.S., and Oudega, B. 1999. Identification of Tn10 insertions in the rfaG, rfaP, and galU genes involved in lipopolysaccharide core biosynthesis that affect Escherichia coli adhesion. Arch. Microbiol. 172: 18.
  • Holden, H.M., Rayment, I., and Thoden, J.B. 2003. Structure and function of enzymes of the Leloir pathway for galactose metabolism. J. Biol. Chem. 278: 4388543888.
  • Holm, L. and Sander, C. 1996. Mapping the protein universe. Science 273: 595603.
  • Kabsch, W. 1993. Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J. Appl. Crystallogr. 26: 795800.
  • Kim, H., Wu, C.A., Kim, D.Y., Han, Y.H., Ha, S.C., Kim, C.S., Suh, S.W., and Kim, K.K. 2004. Crystallization and preliminary X-ray crystallographic study of UDP-glucose pyrophosphorylase (UGPase) from Helicobacter pylori. Acta Crystallogr. D Biol. Crystallogr. 60: 14471449.
  • Knop, J.K. and Hansen, R.G. 1970. Uridine diphosphate glucose pyrophosphorylase. IV. Crystallization and properties of the enzyme from human liver. J. Biol. Chem. 245: 24992504.
  • Koropatkin, N.M. and Holden, H.M. 2004. Molecular structure of alpha-D-glucose-1-phosphate cytidylyltransferase from Salmonella typhi. J. Biol. Chem. 279: 4402344029.
  • Koropatkin, N.M., Cleland, W.W., and Holden, H.M. 2005. Kinetic and structural analysis of alpha-D-Glucose-1-phosphate cytidylyltransferase from Salmonella typhi. J. Biol. Chem. 280: 1077410780.
  • Mollerach, M. and Garcia, E. 2000. The galU gene of Streptococcus pneumoniae that codes for a UDP-glucose pyrophosphorylase is highly polymorphic and suitable for molecular typing and phylogenetic studies. Gene 260: 7786.
  • Mollerach, M., Lopez, R., and Garcia, E. 1998. Characterization of the galU gene of Streptococcus pneumoniae encoding a uridine diphosphoglucose pyrophosphorylase: A gene essential for capsular polysaccharide biosynthesis. J. Exp. Med. 188: 20472056.
  • Roth, J. 1995. Biosynthesis 4c. In New Comprehensive Biochemistry. Glycoproteins (eds. J.Montreuil et al.), pp. 287312. Elsevier, Amsterdam.
  • Sandhoff, K., van Echten, G., Schroder, M., Schnabel, D., and Suzuki, K. 1992. Metabolism of glycolipids: The role of glycolipid-binding proteins in the function and pathobiochemistry of lysosomes. Biochem. Soc. Trans. 20: 695699.
  • Sheu, K.F. and Frey, P.A. 1978. UDP-glucose pyrophosphorylase. Stereochemical course of the reaction of glucose 1-phosphate with uridine-5′[1-thiotriphosphate]. J. Biol. Chem. 253: 33783380.
  • Silbert, J.E. and Sugumaran, G. 1995. Intracellular membranes in the synthesis, transport, and metabolism of proteoglycans. Biochim. Biophys. Acta 1241: 371384.
  • Sivaraman, J., Sauve, V., Matte, A., and Cygler, M. 2002. Crystal structure of Escherichia coli glucose-1-phosphate thymidylyltransferase (RffH) complexed with dTTP and Mg2+. J. Biol. Chem. 277: 4421444219.
  • Storoni, L.C., McCoy, A.J., and Read, R.J. 2004. Likelihood-enhanced fast rotation functions. Acta Crystallogr. D Biol. Crystallogr. D60: 432438.
  • Terwilliger, T.C. 2000. Maximum-likelihood density modification. Acta Crystallogr. D Biol. Crystallogr. 56: 965972.
  • Terwilliger, T.C. and Berendzen, J. 1999. Automated MAD and MIR structure solution. Acta Crystallogr. D Biol. Crystallogr. 55: 849861.
  • Thoden, J.B., Timson, D.J., Reece, R.J., and Holden, H.M. 2005. Molecular structure of human galactokinase: Implications for Type II galactosemia. J. Biol. Chem. 280: 96629670.
  • Tronrud, D.E., Ten Eyck, L.F., and Matthews, B.W. 1987. An efficient general-purpose least-squares refinement program for macromolecular structures. Acta Crystallogr. A 43: 489501.
  • Turnquist, R.L., Gillett, T.A., and Hansen, R.G. 1974. Uridine diphosphate glucose pyrophosphorylase. Crystallization and properties of the enzyme from rabbit liver and species comparisons. J. Biol. Chem. 249: 76957700.
  • Verbert, A. 1995. Biosynthesis 4c. From Glc3 Man9GlcNAc2-protein to Man5GlcNAc2-protein: transfer “en bloc” and processing. In New Comprehensive Biochemistry. Glycoproteins (eds. J.Montreuil et al.), pp. 145152. Elsevier, Amsterdam.
  • Zuccotti, S., Zanardi, D., Rosano, C., Sturla, L., Tonetti, M., and Bolognesi, M. 2001. Kinetic and crystallographic analyses support a sequential-ordered bi catalytic mechanism for Escherichia coli glucose-1-phosphate thymidylyltransferase. J. Mol. Biol. 313: 831843.