SEARCH

SEARCH BY CITATION

References

  • Åhrman, E., Gustavsson, N., Hultschig, C., Boelens, W., and Sundby Emanuelsson, C. E. 2007. Small heat shock proteins prevent aggregation of citrate synthase and bind to the N-terminal region which is absent in thermostable forms of citrate synthase. Extremophiles (in press).
  • Aquilina, J.A. and Watt, S.J. 2007. The N-terminal domain of αB-crystallin is protected from proteolysis by bound substrate. Biochem. Biophys. Res. Commun. 353: 11151120.
  • Aquilina, J.A., Benesch, J.L., Bateman, O.A., Slingsby, C., and Robinson, C.V. 2003. Polydispersity of a mammalian chaperone: Mass spectrometry reveals the population of oligomers in αB-crystallin. Proc. Natl. Acad. Sci. 100: 1061110616.
  • Arnott, M.A., Michael, R.A., Thompson, C.R., Hough, D.W., and Danson, M.J. 2000. Thermostability and thermoactivity of citrate synthases from the thermophilic and hyperthermophilic archaea, Thermoplasma acidophilum and Pyrococcus furiosus. J. Mol. Biol. 304: 657668.
  • Basha, E., Lee, G.J., Breci, L.A., Hausrath, A.C., Buan, N.R., Giese, K.C., and Vierling, E. 2004. The identity of proteins associated with a small heat shock protein during heat stress in vivo indicates that these chaperones protect a wide range of cellular functions. J. Biol. Chem. 279: 75667575.
  • Basha, E., Friedrich, K.L., and Vierling, E. 2006. The N-terminal arm of small heat shock proteins is important for both chaperone activity and substrate specificity. J. Biol. Chem. 281: 3994339952.
  • Bates, P.A., Kelley, L.A., MacCallum, R.M., and Sternberg, M.J. 2001. Enhancement of protein modeling by human intervention in applying the automatic programs 3D-JIGSAW and 3D-PSSM. Proteins 5: 3946.
  • Bennett, K.L., Kussmann, M., Bjork, P., Godzwon, M., Mikkelsen, M., Sorensen, P., and Roepstorff, P. 2000. Chemical cross-linking with thiol-cleavable reagents combined with differential mass spectrometric peptide mapping–a novel approach to assess intermolecular protein contacts. Protein Sci. 9: 15031518.
  • Biswas, A., Goshe, J., Miller, A., Santhoshkumar, P., Luckey, C., Bhat, M.B., and Nagaraj, R.H. 2007. Paradoxical effects of substitution and deletion mutation of Arg56 on the structure and chaperone function of human αB-Crystallin. Biochemistry 46: 11171127.
  • Blennow, A., Surin, B.P., Ehring, H., McLennan, N.F., and Spangfort, M.D. 1995. Isolation and biochemical characterization of highly purified Escherichia coli molecular chaperone Cpn60 (GroEL) by affinity chromatography and urea-induced monomerization. Biochim. Biophys. Acta 1252: 6978.
  • Bova, M.P., McHaourab, H.S., Han, Y., and Fung, B.K. 2000. Subunit exchange of small heat shock proteins. Analysis of oligomer formation of αA-crystallin and Hsp27 by fluorescence resonance energy transfer and site-directed truncations. J. Biol. Chem. 275: 10351042.
  • Chen, Q. and Vierling, E. 1991. Analysis of conserved domains identifies a unique structural feature of a chloroplast heat shock protein. Mol. Gen. Genet. 226: 425431.
  • Franzmann, T.M., Wuhr, M., Richter, K., Walter, S., and Buchner, J. 2005. The activation mechanism of Hsp26 does not require dissociation of the oligomer. J. Mol. Biol. 350: 10831093.
  • Friedrich, K.L., Giese, K.C., Buan, N.R., and Vierling, E. 2004. Interactions between small heat shock protein subunits and substrate in small heat shock protein-substrate complexes. J. Biol. Chem. 279: 10801089.
  • Ghosh, J.G., Shenoy, A.K. Jr, and Clark, J.I. 2006. N- and C-terminal motifs in human αB crystallin play an important role in the recognition, selection, and solubilization of substrates. Biochemistry 45: 1384713854.
  • Giese, K.C. and Vierling, E. 2002. Changes in oligomerization are essential for the chaperone activity of a small heat shock protein in vivo and in vitro. J. Biol. Chem. 277: 4631046318.
  • Giese, K.C., Basha, E., Catague, B.Y., and Vierling, E. 2005. Evidence for an essential function of the N terminus of a small heat shock protein in vivo, independent of in vitro chaperone activity. Proc. Natl. Acad. Sci. 102: 1889618901.
  • Gustavsson, N., Harndahl, U., Emanuelsson, A., Roepstorff, P., and Sundby, C. 1999. Methionine sulfoxidation of the chloroplast small heat shock protein and conformational changes in the oligomer. Protein Sci. 8: 25062512.
  • Gustavsson, N., Kokke, B.P., Anzelius, B., Boelens, W.C., and Sundby, C. 2001. Substitution of conserved methionines by leucines in chloroplast small heat shock protein results in loss of redox-response but retained chaperone-like activity. Protein Sci. 10: 17851793.
  • Harndahl, U., Hall, R.B., Osteryoung, K.W., Vierling, E., Bornman, J.F., and Sundby, C. 1999. The chloroplast small heat shock protein undergoes oxidation-dependent conformational changes and may protect plants from oxidative stress. Cell Stress Chaperones 4: 129138.
  • Harndahl, U., Kokke, B.P., Gustavsson, N., Linse, S., Berggren, K., Tjerneld, F., Boelens, W.C., and Sundby, C. 2001. The chaperone-like activity of a small heat shock protein is lost after sulfoxidation of conserved methionines in a surface-exposed amphipathic α-helix. Biochim. Biophys. Acta 1545: 227237.
  • Haslbeck, M. 2002. sHsps and their role in the chaperone network. Cell. Mol. Life Sci. 59: 16491657.
  • Haslbeck, M., Ignatiou, A., Saibil, H., Helmich, S., Frenzl, E., Stromer, T., and Buchner, J. 2004. A domain in the N-terminal part of Hsp26 is essential for chaperone function and oligomerization. J. Mol. Biol. 343: 445455.
  • Haslbeck, M., Franzmann, T., Weinfurtner, D., and Buchner, J. 2005. Some like it hot: The structure and function of small heat-shock proteins. Nat. Struct. Mol. Biol. 12: 842846.
  • Hjerno, K. and Roepstorff, P. 2005. Improvment of sequence coverage in peptide mass fingerprinting. John Wiley, NY.
  • Horwitz, J. 1992. α-crystallin can function as a molecular chaperone. Proc. Natl. Acad. Sci. 89: 1044910453.
  • Jakob, U., Lilie, H., Meyer, I., and Buchner, J. 1995. Transient interaction of Hsp90 with early unfolding intermediates of citrate synthase. Implications for heat shock in vivo. J. Biol. Chem. 270: 72887294.
  • Kim, K.K., Kim, R., and Kim, S.H. 1998. Crystal structure of a small heat-shock protein. Nature 394: 595599.
  • Lentze, N. and Narberhaus, F. 2004. Detection of oligomerisation and substrate recognition sites of small heat shock proteins by peptide arrays. Biochem. Biophys. Res. Commun. 325: 401407.
  • Lentze, N., Aquilina, J.A., Lindbauer, M., Robinson, C.V., and Narberhaus, F. 2004. Temperature and concentration-controlled dynamics of rhizobial small heat shock proteins. Eur. J. Biochem. 271: 24942503.
  • Mogk, A., Deuerling, E., Vorderwulbecke, S., Vierling, E., and Bukau, B. 2003. Small heat shock proteins, ClpB and the DnaK system form a functional triade in reversing protein aggregation. Mol. Microbiol. 50: 585595.
  • Narberhaus, F. 2002. α-crystallin-type heat shock proteins: Socializing minichaperones in the context of a multichaperone network. Microbiol. Mol. Biol. Rev. 66: 6493.
  • Nettleton, E.J., Sunde, M., Lai, Z., Kelly, J.W., Dobson, C.M., and Robinson, C.V. 1998. Protein subunit interactions and structural integrity of amyloidogenic transthyretins: Evidence from electrospray mass spectrometry. J. Mol. Biol. 281: 553564.
  • Pierce Chemical Company. 2004. Instructions DSP/DTSSP. Rockford, IL.
  • Remington, S., Wiegand, G., and Huber, R. 1982. Crystallographic refinement and atomic models of two different forms of citrate synthase at 2.7 and 1.7 A resolution. J. Mol. Biol. 158: 111152.
  • Russell, R.J., Hough, D.W., Danson, M.J., and Taylor, G.L. 1994. The crystal structure of citrate synthase from the thermophilic archaeon, Thermoplasma acidophilum. Structure 2: 11571167.
  • Russell, R.J., Ferguson, J.M., Hough, D.W., Danson, M.J., and Taylor, G.L. 1997. The crystal structure of citrate synthase from the hyperthermophilic archaeon Pyrococcus furiosus at 1.9 A resolution. Biochemistry 36: 99839994.
  • Sobott, F., Benesch, J.L., Vierling, E., and Robinson, C.V. 2002. Subunit exchange of multimeric protein complexes. Real-time monitoring of subunit exchange between small heat shock proteins by using electrospray mass spectrometry. J. Biol. Chem. 277: 3892138929.
  • Sorensen, B.K., Hojrup, P., Ostergard, E., Jorgensen, C.S., Enghild, J., Ryder, L.R., and Houen, G. 2002. Silver staining of proteins on electroblotting membranes and intensification of silver staining of proteins separated by polyacrylamide gel electrophoresis. Anal. Biochem. 304: 3341.
  • Stamler, R., Kappe, G., Boelens, W., and Slingsby, C. 2005. Wrapping the α-crystallin domain fold in a chaperone assembly. J. Mol. Biol. 353: 6879.
  • Stromer, T., Ehrnsperger, M., Gaestel, M., and Buchner, J. 2003. Analysis of the interaction of small heat shock proteins with unfolding proteins. J. Biol. Chem. 278: 1801518021.
  • Stromer, T., Fischer, E., Richter, K., Haslbeck, M., and Buchner, J. 2004. Analysis of the regulation of the molecular chaperone Hsp26 by temperature-induced dissociation: The N-terminal domail is important for oligomer assembly and the binding of unfolding proteins. J. Biol. Chem. 279: 1122211228.
  • Studer, S., Obrist, M., Lentze, N., and Narberhaus, F. 2002. A critical motif for oligomerization and chaperone activity of bacterial α-heat shock proteins. Eur. J. Biochem. 269: 35783586.
  • Sun, Y. and MacRae, T.H. 2005. Small heat shock proteins: Molecular structure and chaperone function. Cell. Mol. Life Sci. 62: 24602476.
  • van Montfort, R., Slingsby, C., and Vierling, E. 2001a. Structure and function of the small heat shock protein/α-crystallin family of molecular chaperones. Adv. Protein Chem. 59: 105156.
  • van Montfort, R.L., Basha, E., Friedrich, K.L., Slingsby, C., and Vierling, E. 2001b. Crystal structure and assembly of a eukaryotic small heat shock protein. Nat. Struct. Biol. 8: 10251030.
  • Vaynberg, J. and Qin, J. 2006. Weak protein-protein interactions as probed by NMR spectroscopy. Trends Biotechnol. 24: 2227.
  • Waters, E.R. and Vierling, E. 1999. Chloroplast small heat shock proteins: Evidence for atypical evolution of an organelle-localized protein. Proc. Natl. Acad. Sci. 96: 1439414399.
  • Waters, E.R., Lee, G.J., and Vierling, E. 1996. Evolution, structure and function of the small heat shock proteins in plants. J. Exp. Bot. 47: 325338.
  • White, H.E., Orlova, E.V., Chen, S., Wang, L., Ignatiou, A., Gowen, B., Stromer, T., Franzmann, T.M., Haslbeck, M., Buchner, J., et al. 2006. Multiple distinct assemblies reveal conformational flexibility in the small heat shock protein Hsp26. Structure 14: 11971204.
  • Wintrode, P.L., Friedrich, K.L., Vierling, E., Smith, J.B., and Smith, D.L. 2003. Solution structure and dynamics of a heat shock protein assembly probed by hydrogen exchange and mass spectrometry. Biochemistry 42: 1066710673.