SEARCH

SEARCH BY CITATION

References

  • Arumugam, S., Gao, G., Patton, B.L., Semenchenko, V., Brew, K., and Van Doren, S.R. 2003. Increased backbone mobility in β-barrel enhances entropy gain driving binding of N-TIMP-1 to MMP-3. J. Mol. Biol. 327: 719734.
  • Bigg, H.F., Morrison, C.J., Butler, G.S., Bogoyevitch, M.A., Wang, Z., Soloway, P.D., and Overall, C.M. 2001. Tissue inhibitor of metalloproteinases-4 inhibits but does not support the activation of gelatinase A via efficient inhibition of membrane type 1-matrix metalloproteinase. Cancer Res. 61: 36103618.
  • Bode, W., Grams, F., Reinemer, P., Gomis-Ruth, F.X., Baumann, U., McKay, D.B., and Stocker, W. 1996. The metzincin-superfamily of zinc-peptidases. Adv. Exp. Med. Biol. 389: 111.
  • Brew, K., Dinakarpandian, D., and Nagase, H. 2000. Tissue inhibitors of metalloproteinases (TIMPs): Evolution, structure and function. Biochim. Biophys. Acta 1477: 267283.
  • Brooks, P.C., Stromblad, S., Sanders, L.C., von Schalscha, T.L., Aimes, R.T., Stetler-Stevenson, W.G., Quigley, J.P., and Cheresh, D.A. 1996. Localization of matrix metalloproteinase MMP-2 to the surface of invasive cells by interaction with integrin alpha v beta 3. Cell 85: 683693.
  • Brooks, P.C., Silletti, S., von Schalscha, T.L., Friedlander, M., and Cheresh, D.A. 1998. Disruption of angiogenesis by PEX, a noncatalytic metalloproteinase fragment with integrin binding activity. Cell 92: 391400.
  • Browner, M.F., Smith, W.W., and Castelhano, A.L. 1995. Matrilysin-inhibitor complexes: Common themes among metalloproteases. Biochemistry 34: 66026610.
  • Butler, G.S., Will, H., Atkinson, S.J., and Murphy, G. 1997. Membrane-type-2 matrix metalloproteinase can initiate the processing of progelatinase A and is regulated by the tissue inhibitors of metalloproteinases. Eur. J. Biochem. 244: 653657.
  • Butler, G.S., Hutton, M., Wattam, B.A., Williamson, R.A., Knauper, V., Willenbrock, F., and Murphy, G. 1999. The specificity of TIMP-2 for matrix metalloproteinases can be modified by single amino acid mutations. J. Biol. Chem. 274: 2039120396.
  • Chen, E.I., Kridel, S.J., Howard, E.W., Li, W., Godzik, A., and Smith, J.W. 2002. A unique substrate recognition profile for matrix metalloproteinase-2. J. Biol. Chem. 277: 44854491.
  • Chen, E.I., Li, W., Godzik, A., Howard, E.W., and Smith, J.W. 2003. A residue in the S2 subsite controls substrate selectivity of matrix metalloproteinase-2 and matrix metalloproteinase-9. J. Biol. Chem. 278: 1715817163.
  • Coussens, L.M., Tinkle, C.L., Hanahan, D., and Werb, Z. 2000. MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell 103: 481490.
  • Elkins, P.A., Ho, Y.S., Smith, W.W., Janson, C.A., D'Alessio, K.J., McQueney, M.S., Cummings, M.D., and Romanic, A.M. 2002. Structure of the C-terminally truncated human ProMMP9, a gelatin-binding matrix metalloproteinase. Acta Crystallogr. D Biol. Crystallogr. 58: 11821192.
  • Fernandez-Catalan, C., Bode, W., Huber, R., Turk, D., Calvete, J.J., Lichte, A., Tschesche, H., and Maskos, K. 1998. Crystal structure of the complex formed by the membrane type 1-matrix metalloproteinase with the tissue inhibitor of metalloproteinases-2, the soluble progelatinase A receptor. EMBO J. 17: 52385248.
  • Fernandez-Patron, C., Martinez-Cuesta, M.A., Salas, E., Sawicki, G., Wozniak, M., Radomski, M.W., and Davidge, S.T. 1999. Differential regulation of platelet aggregation by matrix metalloproteinases-9 and -2. Thromb. Haemost. 82: 17301735.
  • Gillmor, S.A., Takeuchi, T., Yang, S.Q., Craik, C.S., and Fletterick, R.J. 2000. Compromise and accommodation in ecotin, a dimeric macromolecular inhibitor of serine proteases. J. Mol. Biol. 299: 9931003.
  • Gomis-Ruth, F.X., Maskos, K., Betz, M., Bergner, A., Huber, R., Suzuki, K., Yoshida, N., Nagase, H., Brew, K., Bourenkov, G.P., et al. 1997. Mechanism of inhibition of the human matrix metalloproteinase stromelysin-1 by TIMP-1. Nature 389: 7781.
  • Ho, S.N., Hunt, H.D., Horton, R.M., Pullen, J.K., and Pease, L.R. 1989. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77: 5159.
  • Huang, W., Suzuki, K., Nagase, H., Arumugam, S., Van Doren, S.R., and Brew, K. 1996. Folding and characterization of the amino-terminal domain of human tissue inhibitor of metalloproteinases-1 (TIMP-1) expressed at high yield in E. coli. FEBS Lett. 384: 155161.
  • Huang, W., Meng, Q., Suzuki, K., Nagase, H., and Brew, K. 1997. Mutational study of the amino-terminal domain of human tissue inhibitor of metalloproteinases 1 (TIMP-1) locates an inhibitory region for matrix metalloproteinases. J. Biol. Chem. 272: 2208622091.
  • Iyer, S., Wei, S., Brew, K., and Acharya, K.R. 2007. Crystal structure of the catalytic domain of matrix metalloproteinase-1 in complex with the inhibitory domain of tissue inhibitor of metalloproteinase-1. J. Biol. Chem. 282: 364371.
  • Jinga, D.C., Blidaru, A., Condrea, I., Ardeleanu, C., Dragomir, C., Szegli, G., Stefanescu, M., and Matache, C. 2006. MMP-9 and MMP-2 gelatinases and TIMP-1 and TIMP-2 inhibitors in breast cancer: Correlations with prognostic factors. J. Cell. Mol. Med. 10: 499510.
  • Kashiwagi, M., Tortorella, M., Nagase, H., and Brew, K. 2001. TIMP-3 Is a potent inhibitor of ADAM-TS4 (aggrecanase 1) and ADAM-TS5 (aggrecanase 2). J. Biol. Chem. 276: 1250112504.
  • Kolkenbrock, H., Essers, L., Ulbrich, N., and Will, H. 1999. Biochemical characterization of the catalytic domain of membrane-type 4 matrix metalloproteinase. Biol. Chem. 380: 11031108.
  • Lang, R., Braun, M., Sounni, N.E., Noel, A., Frankenne, F., Foidart, J.M., Bode, W., and Maskos, K. 2004. Crystal structure of the catalytic domain of MMP-16/MT3-MMP: Characterization of MT-MMP specific features. J. Mol. Biol. 336: 213225.
  • Lee, M.H., Maskos, K., Knauper, V., Dodds, P., and Murphy, G. 2002a. Mapping and characterization of the functional epitopes of tissue inhibitor of metalloproteinases (TIMP)-3 using TIMP-1 as the scaffold: A new frontier in TIMP engineering. Protein Sci. 11: 24932503.
  • Lee, M.H., Verma, V., Maskos, K., Nath, D., Knauper, V., Dodds, P., Amour, A., and Murphy, G. 2002b. Engineering N-terminal domain of tissue inhibitor of metalloproteinase (TIMP)-3 to be a better inhibitor against tumour necrosis factor-alpha-converting enzyme. Biochem. J. 364: 227234.
  • Lee, M.H., Rapti, M., and Murphy, G. 2003. Unveiling the surface epitopes that render tissue inhibitor of metalloproteinase-1 inactive against membrane type 1-matrix metalloproteinase. J. Biol. Chem. 278: 4022440230.
  • Lee, M.H., Rapti, M., Knauper, V., and Murphy, G. 2004. Threonine 98, the pivotal residue of tissue inhibitor of metalloproteinases (TIMP)-1 in metalloproteinase recognition. J. Biol. Chem. 279: 1756217569.
  • Maskos, K., Lang, R., Tschesche, H., and Bode, W. 2007. Flexibility and variability of TIMP binding: X-ray structure of the complex between collagenase-3/MMP-13 and TIMP-2. J. Mol. Biol. 366: 12221231.
  • McCawley, L.J. and Matrisian, L.M. 2001. Matrix metalloproteinases: They're not just for matrix anymore! Curr. Opin. Cell Biol. 13: 534540.
  • Meng, Q., Malinovskii, V., Huang, W., Hu, Y., Chung, L., Nagase, H., Bode, W., Maskos, K., and Brew, K. 1999. Residue 2 of TIMP-1 is a major determinant of affinity and specificity for matrix metalloproteinases but effects of substitutions do not correlate with those of the corresponding P1′ residue of substrate. J. Biol. Chem. 274: 1018410189.
  • Morgunova, E., Tuuttila, A., Bergmann, U., Isupov, M., Lindqvist, Y., Schneider, G., and Tryggvason, K. 1999. Structure of human pro-matrix metalloproteinase-2: Activation mechanism revealed. Science 284: 16671670.
  • Page-McCaw, A., Ewald, A.J., and Werb, Z. 2007. Matrix metalloproteinases and the regulation of tissue remodelling. Nat. Rev. Mol. Cell Biol. 7: 221233.
  • Rowsell, S., Hawtin, P., Minshull, C.A., Jepson, H., Brockbank, S.M., Barratt, D.G., Slater, A.M., McPheat, W.L., Waterson, D., Henney, A.M., et al. 2002. Crystal structure of human MMP9 in complex with a reverse hydroxamate inhibitor. J. Mol. Biol. 319: 173181.
  • Shimada, T., Nakamura, H., Ohuchi, E., Fujii, Y., Murakami, Y., Sato, H., Seiki, M., and Okada, Y. 1999. Characterization of a truncated recombinant form of human membrane type 3 matrix metalloproteinase. Eur. J. Biochem. 262: 907914.
  • Steffensen, B., Wallon, U.M., and Overall, C.M. 1995. Extracellular matrix binding properties of recombinant fibronectin type II-like modules of human 72-kDa gelatinase/type IV collagenase. High affinity binding to native type I collagen but not native type IV collagen. J. Biol. Chem. 270: 1155511566.
  • Wei, S., Chen, Y., Chung, L., Nagase, H., and Brew, K. 2003. Protein engineering of the tissue inhibitor of metalloproteinase 1 (TIMP-1) inhibitory domain. In search of selective matrix metalloproteinase inhibitors. J. Biol. Chem. 278: 98319834.
  • Wei, S., Kashiwagi, M., Kota, S., Xie, Z., Nagase, H., and Brew, K. 2005. Reactive site mutations in tissue inhibitor of metalloproteinase-3 disrupt inhibition of matrix metalloproteinases but not tumor necrosis factor-alpha-converting enzyme. J. Biol. Chem. 280: 3287732882.
  • Will, H., Atkinson, S.J., Butler, G.S., Smith, B., and Murphy, G. 1996. Membrane-type-2 matrix metalloproteinase can initiate the processing of progelatinase A and is regulated by the tissue inhibitors of metalloproteinases. J. Biol. Chem. 271: 1711917123.
  • Williamson, R.A., Hutton, M., Vogt, G., Rapti, M., Knauper, V., Carr, M.D., and Murphy, G. 2001. Tyrosine 36 plays a critical role in the interaction of the AB loop of tissue inhibitor of metalloproteinases-2 with matrix metalloproteinase-14. J. Biol. Chem. 276: 3296632970.
  • Wingfield, P.T., Sax, J.K., Stahl, S.J., Kaufman, J., Palmer, I., Chung, V., Corcoran, M.L., Kleiner, D.E., and Stetler-Stevenson, W.G. 1999. Biophysical and functional characterization of full-length, recombinant human tissue inhibitor of metalloproteinases-2 (TIMP-2) produced in Escherichia coli. Comparison of wild type and amino-terminal alanine appended variant with implications for the mechanism of TIMP functions. J. Biol. Chem. 274: 2136221368.