SEARCH

SEARCH BY CITATION

References

  • Berg, O.G., Cajal, Y., Butterfoss, G.L., Grey, R.L., Alsina, M.A., Yu, B.Z., and Jain, M.K. 1998. Interfacial activation of triglyceride lipase from Thermomyces (Humicola) lanuginosa: Kinetic parameters and a basis for control of the lid. Biochemistry 37: 66156627.
  • Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248254.
  • Brady, L., Brzozowski, A.M., Derewenda, Z.S., Dodson, E., Dodson, G., Tolley, S., Turkenburg, J.P., Christiansen, L., Huge-Jensen, B., Norskov, L., et al. 1990. A serine protease triad forms the catalytic centre of a triacylglycerol lipase. Nature 343: 767770.
  • Brockerhoff, H. 1968. Substrate specificity of pancreatic lipase. Biochim. Biophys. Acta 159: 296303.
  • Brockman, H.L., Law, J.H., and Kezdy, F.J.J. 1973. Catalysis by adsorbed enzymes. The hydrolysis of tripropionin by pancreatic lipase adsorbed to siliconized glass beads. J. Biol. Chem. 248: 49654970.
  • Brustein, E.A., Vedenkina, N.S., and Irkova, M.N. 1973. Fluorescence and the location of tryptophan residues in protein molecules. Photochem. Photobiol. 18: 263279.
  • Brzozowski, A.M., Derewenda, U., Derewenda, Z.S., Dodson, G.G., Lawson, D.M., Turkenburg, J.P., Björkling, F., Huge-Jensen, B., Patkar, S.A., and Thim, L.A. 1991. Model for interfacial activation in lipases from the structure of a fungal lipase-inhibitor complex. Nature 351: 491494.
  • Cajal, Y., Svendsen, A., Girona, V., Patkar, S.A., and Alsina, M.A. 2000. Interfacial control of lid opening in Thermomyces lanuginosa lipase. Biochemistry 39: 413423.
  • Chamorro, S., Sanchez-Montero, J.M., Alcantara, A.R., and Sinisterra, J.V. 1998. Treatment of Candida rugosa lipase with short-chain polar organic solvents enhances its hydrolytic and synthetic activities. Biotech. Lett. 20: 499505.
  • Chen, R., Knutson, J., Ziffer, H., and Porter, D. 1991. Fluorescence of tryptophan dipeptides: Correlations with the rotamer model. Biochemistry 30: 51845195.
  • Das, T.K. and Mazumdar, S. 1995. pH-induced conformational perturbation in horseradish peroxidase. Picosecond tryptophan fluorescence studies on native and cyanide-modified enzymes. Eur. J. Biochem. 227: 823828.
    Direct Link:
  • Davidson, W.S., Arnvig-McGuire, K., Kennedy, A., Kosman, J., Hazlett, T.L., and Jonas, A. 1999. Structural organization of the N-terminal domain of apolipoprotein A-I: Studies of tryptophan mutants. Biochemistry 38: 1438714395.
  • Derewenda, Z.S., Derewenda, U., and Dodson, G.G. 1992. The crystal and molecular structure of the Rhizomucor miehei triacylglyceride lipase at 1.9 Å resolution. J. Mol. Biol. 227: 818839.
  • Derewenda, U., Swenson, L., Green, R., Wei, Y., Dodson, G.G., Yamaguchi, S., Haas, M.J., and Derewenda, Z.S. 1994a. Current progress in crystallographic studies of new lipases from filamentous fungi. Protein Eng. 7: 551557.
  • Derewenda, U., Swenson, L., Green, R., Wei, Y., Dodson, G.G., Yamaguchi, S., Haas, M.J., and Derewenda, Z.S. 1994b. An unusual buried polar cluster in a family of fungal lipases. Struct. Biol. 1: 3647.
  • Derewenda, U., Swenson, L., Wei, Y., Green, R., Kobos, P.M., Joerger, R., Haas, M.J., and Derewenda, Z.S. 1994c. Conformational lability of lipases observed in the absence of an oil-water interface: Crystallographic studies of enzymes from the fungi Humicola lanuginosa and Rhizopus delemar. J. Lipid Res. 35: 524534.
  • Dolgikh, D.A., Abaturov, L.V., Bolotina, I.A., Brazhnikov, E.V., Bychkova, V.E., Gilmanshin, R.I., Lebedev, Y.O., Semisotnov, G.V., Tiktopulo, E.I., and Ptitsyn, O.B. 1985. Compact state of a protein molecule with pronounced small-scale mobility: Bovine α-lactalbumin. Eur. Biophys. J. 13: 109121.
  • Entressangles, B. and Desnuelle, P. 1974. Action of pancreatic lipase on monomeric tripropionin in the presence of water-miscible organic compounds. Biochim. Biophys. Acta 341: 437446.
  • Gratton, E., Jameson, D.M., and Hall, R.D. 1984. Multifrequency phase and modulation fluorometry. Annu. Rev. Biophys. Bioeng. 13: 105124.
  • Graupner, M., Haalck, L., Spener, F., Lindner, H., Glatter, O., Paltauf, F., and Hermetter, A. 1999. Molecular dynamics of microbial lipases as determined from their intrinsic tryptophan fluorescence. Biophys. J. 77: 493504.
  • Hermoso, J., Pignol, D., Penel, S., Roth, M., Chapus, G., and Fontecilla-Camps, J.C. 1997. Neutron crystallographic evidence of lipase-colipase complex activation by a micelle. EMBO J. 16: 55315536.
  • Holmquist, M., Martinelle, M., Clausen, I.G., Patkar, S.A., Svendsen, A., and Hult, K. 1994. Trp89 in the lid of Humicola lanuginosa lipase is important for efficient hydrolysis of tributyrin. Protein Eng. 29: 599603.
  • Holmquist, M., Clausen, I.G., Patkar, S.A., Svendsen, A., and Hult, K. 1995. Probing a functional role of Glu87 and Trp89 in the lid of Humicola lanuginosa lipase through transesterification reaction in organic solvent. J. Protein Chem. 14: 217224.
  • Jameson, D.M. and Hazlett, T.L. 1991. Timeresolved fluorescence in biology and biochemistry. In Biophysical and biochemical aspect of fluorescence spectroscopy (ed. G.Dewey), pp. 105133. Plenum Press, New York.
  • Jennifer, K.B. and Kathleen, S.M. 1997. Ligand-induced conformational changes in lactose repressor: A fluorescence study of single tryptophan mutants. Biochemistry 36: 1563215642.
  • Jääskeläinen, S, Verma, C.S., Hubbard, R.E., and Caves, L.S.D. 1999. Identifying key electrostatic interactions in Rhizomycor miehei lipase: The influence of solvent dielectric. Theoretical Chemistry Accounts 101: 175179.
  • Kim, K.K., Song, H.K., Shin, D.H., Hwang, K.Y., and Suh, S.W. 1997. The crystal structure of a triacylglycerol lipase from cepacia reveals a highly open conformation in the absence of a bound inhibitor. Structure 5: 173185.
  • Lakowicz, J.R. 1999. Principles of fluorescence spectroscopy, 2nd edition. Plenum Press, New York.
  • Laskowski, R.A., Hutchinson, E.G., Michie, A.D., Wallace, A.C., Jones, M.L., and Thornton, J.M. 1997. PDBsum: A Web-based database of summaries and analyses of all PDB structures. Trends Biochem. Sci. 22: 488490.
  • Lawson, D.M., Brzozowski, A.M., Dodson, G.G., Hubbard, R.E., Huge-Jensen, B., Boel, E., and Derewenda, Z.S. 1994. In Lipase- their biochemistry, structure and application (eds. P.Woolley and S.Petersen), pp. 7794. Cambridge University Press, Cambridge, UK.
  • Martinelle, M., Holmquist, M., and Hult, K. 1995. On the interfacial activation of Candida antarctica lipase A and B as compared with Humicola lanuginosa lipase. Biochim. Biophys. Acta 1258: 272276.
  • Miller, J.M. 1979. Recent advances in molecular luminescence analysis. Anal. Proc. 16: 203208.
  • Norin, M., Olsen, O., Svendsen, A., Edholm, O., and Hult, K. 1993. Theoretical studies of Rhizomucor miehei lipase activation. Protein Eng. 6: 855863.
  • Peters, G.H., Svendsen, A., Langberg, H., Vind, J., Patkar, S.A., Toxvaerd, S., and Kinnunen, P.K.J. 1998. Active serine involved in the stabilization of the active site loop in the Humicola lanuginosa lipase. Biochemistry 37: 1237512383.
  • Pieterson, W.A., Vidal, J.C., Volwerk, J.J., and de Haas, G.H. 1974. Zymogen-catalyzed hydrolysis of monomeric substrates and the presence of a recognition site for lipid-water interfaces in phospholipase A2. Biochemistry 13: 14551460.
  • Ransac, S., Blaauw, M., Dijkstra, B.W., Slotboom, A.T., Boots, J.W., and Verheij, H.M. 1995a. Crystallization and preliminary X-ray analysis of a lipase from Staphylococcus hyicus. J. Struct. Biol. 114: 153155.
  • Ransac, S., Carriere, F., Rogalska, E., Verger, R., Marguet, F., Buono, G., Pinho Melo, E., Cabral, J.M.S., Egloff, M.-P., van Tilbeurgh, H., et al. 1995b. The kinetics, specificities and structural features of lipases. Proceedings of the NATO-ASI workshop on 'Engineering of/with Lipases'. Porto.
  • Rosell, C.M., Vaidya, A.M., and Halling, P.J. 1995. Prediction of denaturing tendency of organic solvents in mixtures with water by measurement of naphthalene solubility. Biochim. Biophys. Acta 1252: 158164.
  • Sarda, L. and Desnuelle, P. 1958. Action de la lipase pancreatique sur les esters en emulsion. Biochim. Biophys. Acta 30: 513521.
  • She, M., Dong, W.J., Umeda, P.K., and Cheung, H.C. 1998. Tryptophan mutants of troponin C from skeletal muscle— An optical probe of the regulatory domain. Eur. J. Biochem. 252: 600607.
  • Simons, J.W., Boots, J.W., Kats, M.P., Slotboom, A.J., Egmond, M.R., and Verheij, H.M. 1997. Dissecting the catalytic mechanism of staphylococcal lipases using carbamate substrates: Chain length selectivity, interfacial activation, and cofactor dependence. Biochemistry 36: 1453914550.
  • Sreerama, N., Venyaminov, S.Y., and Woody, R.W. 1999. Estimation of the number of α-helical and β-strand segments in proteins using circular dichroism spectroscopy. Protein Sci. 8: 370380.
  • Steiner, R.F. 1991. Fluorescence anisotropy. In Topics in fluorescence spectroscopy, vol. 2 (ed. J.R.Lakowicz), pp. 25. Plenum Press, New York.
  • Stobiecka, A., Wysocki, S., and Brzozowski, A.M. 1998. Fluorescence study of fungal lipase from lanuginosa lipase. J. Photochem. Photobiol. B 45: 95102.
  • Svendsen, A., Clausen, I.G., Patkar, S.A., Borch, K., and Thellersen, M. 1997. Protein engineering of microbial lipase of industrial interest. Methods Enzymol. 284: 317340.
  • Swaminathan, R., Nath, U., Udgaonkar, J.B., Periasamy, N., and Krishnamoorthy, G. 1996. Motional dynamics of a buried tryptophan reveals the presence of partially structured forms during denaturation of barstar. Biochemistry 35: 91509157.
  • Thomas, J.A., Buchsbaum, R.N., Zimniak, A., and Racker, E. 1979. Intracellular pH measurements in Ehrlich ascites tumor cells utilizing spectroscopic probes generated in situ. Biochemistry 18: 22102218.
  • van Tilbeurgh, H., Egloff, M.-P., Martinez, C., Rugani, N., Verger, R., and Cambillau, C. 1993. Interfacial activation of the lipase-procolipase complex by mixed micelles revealed by X-ray crystallography. Nature 362: 814820.
  • Volwerk, J.J. and de Haas, G.H. 1982. Pancreatic phospholipase A2: A model for membrane-bound enzymes? In Lipid-protein interactions (eds. O.H.Griffith and P.C.Jost), pp. 69149. Wiley, New York.
  • Wang, Y, Kachel, K., Pablo, L., and London, E. 1997. Use of Trp mutations to evaluate the conformational behavior and membrane insertion of A and B chains in whole diphtheria toxin. Biochemistry 36: 1630016308.
  • Wells, M.A. 1974. The mechanism of interfacial activation of phospholipase A2. Biochemistry 13: 22482257.
  • Woody, R.W. and Dunker, A.K. 1996. Aromatic and cystine side-chain circular dichroism in proteins. In Circular dichroism and the conformational analysis of biomolecules, 1st ed. (ed. G.D.Fasman), pp. 109157. Plenum Press, New York.
  • Zhao, J.M. and London, E. 1986. Similarity of the conformation of diphtheria toxin at high temperature to that in the membrane-penetrating low-pH state. Proc. Natl. Acad. Sci. 83: 20022006.