SEARCH

SEARCH BY CITATION

References

  • Berglund, P., Vallikivi, I., Fransson, L., Dannacher, H., Holmquist, M., Martinelle, M., Björkling, F., Parve, O., and Hult, K. 1999. Switched enantiopreference of Humicola lipase for 2-phenoxyalkanoic acid ester homologs can be rationalized by different substrate binding modes. Tetrahedron: Asymmetry 10: 41914202.
  • Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., and Bourne, P.E. 2000. The Protein Data Bank. Nucleic Acids Res. 28: 235242.
  • Berthod, H. and Pullman, A. 1965. Sur le calcul des caractéristiques du squelette σ des molécules conjuguées. J. Chim. Phys. 62: 942946.
  • Berthod, H., Giessner-Prettre, C.L., and Pullman, A. 1967. Sur les rÔles respectifs des électrons σ et π dans les propriétés des dérivés halogénés des molécules conjuguées. Application Á l'étude de l'uracile et du fluorouracile. Theor. Chim. Acta. 8: 212222.
  • Chen, C.S., Fujimoto, Y., Girdaukas, G., and Sih, C.J. 1982. Quantitative analysis of biochemical kinetic resolutions of enantiomers. J. Am. Chem. Soc. 104: 72947299.
  • Colombo, G., Toba, S., and Merz Jr., K.M. 1999. Rationalization of the enantioselectivity of subtilisin in DMF. J. Am. Chem. Soc. 121: 34863493.
  • Hæffner, F., Norin, T., and Hult, K. 1998. Molecular modeling of the enantioselectivity in lipase-catalyzed transesterification reactions. Biophys. J. 74: 12511262.
  • Holmquist, M., Hæffner, F., Norin, T., and Hult, K. 1996. A structural basis for enantioselective inhibition of Candida rugosa lipase by long-chain aliphatic alcohols. Protein Sci. 5: 8388.
  • Hu, C.H., Brinck, T., and Hult, K. 1998. Ab initio and density functional theory studies of the catalytic mechanism for ester hydrolysis in serine hydrolases. Int. J. Quantum Chem. 69: 89103.
  • Ke, T., Tidor, B., and Klibanov, A.M. 1998. Molecular-modeling calculations of enzymatic enantioselectivity taking hydration into account. Biotechnol. Bioeng. 57: 741745.
  • Kirby, A.J. 1996. Enzyme mechanisms, models and mimics. Angew. Chem. Int. Ed. Engl. 35: 707724.
  • Kraut, J. 1977. Serine-proteases: Structure and mechanism of catalysis. Annu. Rev. Biochem. 46: 331358.
  • Norin, M., Hult, K., Mattson, A., and Norin, T. 1993. Molecular modelling of chymotrypsin-substrate interactions: Calculation of enantioselectivity. Biocatalysis 7: 131147.
  • Orrenius, C., H|izffner, F., Rotticci, D., Öhrner, N., Norin, T., and Hult, K. 1998. Chiral recognition of alcohol enantiomers in acyl transfer reactions catalysed by Candida antarctica lipase B. Biocatalysis and Biotransformation 16: 115.
  • Ottosson, J. and Hult, K. Influence of acyl chain length on the enantioselectivity of Candida antarctica lipase B and its thermodynamics components in kinetic resolution of sec-alcohols. J. Mol. Cat. B.
  • Overbeeke, P.L.A., Ottosson, J., Hult, K., Jongejan, J.A., and Duine, J.A. 1999. The temperature dependence of enzymatic kinetic resolutions reveals the relative contribution of enthalpy and entropy to enzymatic enantioselectivity. Biocatalysis and Biotransformation 17: 6179.
  • Powell, M.J.D. 1977. Restart procedures for the conjugate gradient method. Mathematical Programming 12: 241254.
  • Scheib, H., Pleiss, J., Kovac, A., Paltauf, F., and Schmid, R.D. 1999. Stereoselectivity of Mucorales lipases toward triradylglycerols – A simple solution to a complex problem. Protein Sci. 8: 215221.
  • Schulz, T., Pleiss, J., and Schmid, R.D. 2000. Stereoselectivity of Pseudomonas cepacia lipase toward secondary alcohols: A quantitative model. Protein Sci. 9: 10531062.
  • Tuomi, W.V. and Kazlauskas, R.J. 1999. Molecular basis for enantioselectivity of lipase from Pseudomonas cepacia toward primary alcohols. Modeling, kinetics, and chemical modification of Tyr29 to increase or decrease enantioselectivity. J. Org. Chem. 64: 26382647.
  • Uppenberg, J., Hansen, M.T., Patkar, S., and Jones, T.A. 1994. The sequence, crystal structure determination and refinement of two crystal forms of lipase B from Candida antarctica. Structure 2: 293308.
  • Uppenberg, J., Öhrner, N., Norin, M., Hult, K., Kleywegt, G.J., Patkar, S., Waagen, V., Anthonsen, T., and Jones, T.A. 1995. Crystallographic and molecular-modelling studies of lipase B from Candida antarctica reveal a stereospecificity pocket for secondary alcohols. Biochemistry 34: 1683816851.
  • Weiner, S.J., Kollman, P.A., Case, D.A., Singh, U.C., Ghio, C., Alagona, G., Profeta, S., and Weiner, P. 1984. A new force field for molecular mechanical simulation of nucleic acids and proteins. J. Am. Chem. Soc. 106: 765784.
  • Weiner, S.J., Kollman, P.A., Nguyen, D.T., and Case, D.A. 1986. An all atom force for simulations of proteins and nucleic acids. J. Comp. Chem. 7: 230252.