SEARCH

SEARCH BY CITATION

References

  • Alberti, S., Oehler, S., von Wilcken-Bergmann, B., Krämer, H., and Müller-Hill, B. 1991. Dimer-to-tetramer assembly of Lac repressor involves a leucine heptad repeat. The New Biologist 3: 5762.
  • Alberti, S., Oehler, S., von Wilcken-Bergmann, B., and Müller-Hill, B. 1993. Genetic analysis of the leucine heptad repeats of Lac repressor: Evidence for a 4-helical bundle. EMBO J. 12: 32273236.
  • Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403410.
  • Barbier, C.S. and Short, S.A. 1993. Characterization of cytR mutations that influence oligomerization of mutant repressor subunits. J. Bacteriol. 175: 46254630.
  • Barry, J.K. and Matthews, K.S. 1999. Substitutions at histidine 74 and aspartate 278 alter ligand binding and allostery in lactose repressor protein. Biochemistry 38: 35793590.
  • Bell, C.E. and Lewis, M. 2000. A closer view of the conformation of the Lac repressor bound to operator. Nat. Struct. Biol. 7: 209214.
  • Björkman, A.J. and Mowbray, S.L. 1998. Multiple open forms of ribose-binding protein trace the path of its conformational change. J. Mol. Biol. 279: 651664.
  • Chakerian, A.E. and Matthews, K.S. 1991. Characterization of mutations in oligomerization domain of lac repressor protien. J. Biol. Chem. 266: 2220622214.
  • Chakerian, A.E., Tesmer, V.M., Manly, S.P., Brackett, J.K., Lynch, M.J., Hoh, J.T., and Matthews, K.S. 1991. Evidence for leucine zipper motif in lactose repressor protein. J. Biol. Chem. 266: 13711374.
  • Chang, W.I., Olson, J.S., and Matthews, K.S. 1993. Lysine 84 is at the subunit interface of lac repressor protein. J. Biol. Chem. 268: 1761317622.
  • Chang, W.I., Barrera, P., and Matthews, K.S. 1994. Identification and characterization of aspartate residues that play key roles in the allosteric regulation of a transcription factor: Aspartate 274 is essential for inducer binding in lac repressor. Biochemistry 33: 36073616.
  • Chaudhuri, B.N., Ko, J., Park, C., Jones, T.A., and Mowbray, S.L. 1999. Structure of D-allose binding protein from Escherichia coli bound to D-allose at 1.8 Å resolution. J. Mol. Biol. 286: 15191531.
  • Chen, J. and Matthews, K.S. 1992a. Deletion of lactose repressor carboxyl-terminal domain affects tetramer formation. J. Biol. Chem. 267: 1384313850.
  • Chen, J. and Matthews, K.S. 1992b. T41 mutation in lac repressor is Tyr282 [RIGHTWARDS ARROW]Asp. Genes 111: 145146.
  • Chuprina, V.P., Rullmann, J.A.C., Lamerichs, R.M.J.N., van Boom, J.H., Boelens, R., and Kaptein, R. 1993. Structure of the complex of lac repressor headpiece and an 11 base-pair half-operator determined by nuclear magnetic resonance spectroscopy and restrained molecular dynamics. J. Mol. Biol. 234: 446462.
  • Daly, T.J. and Matthews, K.S. 1986. Characterization and modification of a monomeric mutant of the lactose repressor protein. Biochemistry 25: 54745478.
  • Daly, T.J., Olson, J.S., and Matthews, K.S. 1986. Formation of mixed disulfide adducts at cysteine-281 of the lactose repressor protein affects operator and inducer binding parameters. Biochemistry 25: 54685474.
  • Dong, F., Spott, S., Zimmermann, O., Kisters-Woike, B., Müller-Hill, B., and Barker, A. 1999. Dimerisation mutants of lac repressor. I. A monomeric mutant, L251A, that binds lac operator DNA as a dimer. J. Mol. Biol. 290: 653666.
  • Files, J.G. and Weber, K. 1976. Limited proteolytic digestion of lac repressor by trypsin: Chemical nature of the resulting trypsin-resistant core. J. Biol. Chem. 251: 33863391.
  • Friedman, A.M., Fischmann, T.O., and Steitz, T.A. 1995. Crystal structure of lac repressor core tetramer and its implications for DNA looping. Science 268: 17211727.
  • Geisler, N. and Weber, K. 1977. Isolation of the amino-terminal fragment of lactose repressor necessary for DNA binding. Biochemistry 16: 938943.
  • Gerk, L.P., Leven, O., and Müller-Hill, B. 2000. Strengthening the dimerisation interface of lac repressor increases its thermostability by 40 deg C. J. Mol. Biol. 299: 805812.
  • Hars, U., Horlacher, R., Boos, W., Welte, W., and Diederichs, K. 1998. Crystal structure of the effector-binding domain of the trehalose-repressor of Escherichia coli, a member of the LacI family, in its complexes with inducer trehalose-6-phosphate and noninducer trehalose. Protein Sci. 7: 25112521.
  • Holm, L. and Sander, C. 1996. Mapping the protein universe. Science 273: 595560.
  • Jovin, T.M., Geisler, N., and Weber, K. 1977. Amino-terminal fragments of Escherichia coli lac repressor bind to DNA. Nature 269: 668672.
  • Khoury, A.M., Nick, H.S., and Lu, P. 1991. In vivo interaction of Escherichia coli lac repressor N-terminal fragments with the lac operator. J. Mol. Biol. 219: 623634.
  • Kleina, L.G. and Miller, J.H. 1990. Genetic studies of the lac repressor. XIII. Extensive amino acid replacements generated by the use of natural and synthetic nonsense suppressors. J. Mol. Biol. 212: 295318.
  • Lewis, M., Chang, G., Horton, N.C., Kercher, M.A., Pace, H.C., Schumacher, M.A., Brennan, R.G., and Lu, P. 1996. Crystal structure of the lactose operon repressor and its complexes with DNA and inducer. Science 271: 12471254.
  • Lu, F., Brennan, R.G., and Zalkin, H. 1998. Escherichia coli purine repressor: Key residues for the allosteric transition between active and inactive conformations and for interdomain signaling. Biochemistry 37: 1568015690.
  • Markiewicz, P., Kleina, L.G., Cruz, C., Ehret, S., and Miller, J.H. 1994. Genetic studies of the lac repressor. XIV. Analysis of 4000 altered Escherichia coli lac repressors reveals essential and non-essential residues, as well as “spacers” which do not require a specific sequence. J. Mol. Biol. 240: 421434.
  • Matthews, K.S. and Nichols, J.C. 1998. Lactose repressor protein: Functional properties and structure. Prog. Nucl. Acid Res. Mol. Biol. 58: 127164.
  • Matthews, K.S., Falcon, C.M., and Swint-Kruse, L. 2000. Relieving repression. Nat. Struct. Biol. 7: 184187.
  • Mowbray, S.L. and Björkman, A.J. 1999. Conformational changes of ribose-binding protein and two related repressors are tailored to fit the functional need. J. Mol. Biol. 294: 487499.
  • Mowbray, S.L. and Cole, L.B. 1992. 1.7Å X-ray structure of the periplasmic ribose receptor from Escherichia coli. J. Mol. Biol. 177: 155175.
  • Müller-Hill, B. 1983. Sequence homology between Lac and Gal repressors and three sugar-binding periplasmic proteins. Nature 302: 163164.
  • Newcomer, M.E., Gilliland, G.L., and Quiocho, F.A. 1981. L-Arabinose-binding protein-sugar complex at 2.4Å resolution. J. Biol. Chem. 256: 1321313217.
  • Nichols, J.C. and Matthews, K.S. 1997. Combinatorial mutations of lac repressor: Stability of monomer-monomer interface is increased by apolar substitution at position 84. J. Biol. Chem. 272: 1855018557.
  • Nichols, J.C., Vyas, N.K., Quiocho, F.A., and Matthews, K.S. 1993. Model of lactose repressor core based on alignment with sugar-binding proteins is concordant with genetic and chemical data. J. Biol. Chem. 268: 1760217612.
  • Ogata, R.T. and Gilbert, W. 1978. An amino-terminal fragment of lac repressor binds specifically to lac operator. Proc. Natl. Acad. Sci. 75: 58515854.
  • Platt, T., Files, J.G., and Weber, K. 1973. Lac repressor: Specific proteolytic destruction of the NH2-terminal region and loss of the deoxyribonucleic acid-binding activity. J. Biol. Chem. 248: 110121.
  • Quiocho, F.A. and Vyas, N.K. 1984. Novel stereospecificity of the L-arabinose-binding protein. Nature 310: 381386.
  • Sams, C.F., Vyas, N.K., Quiocho, F.A., and Matthews, K.S. 1984. Predicted structure of the sugar-binding site of the lac repressor. Nature 310: 429430.
  • Schmitz, A., Schmeissner, U., Miller, J.H., and Lu, P. 1976. Mutations affecting the quaternary structure of the lac repressor. J. Biol. Chem. 251: 33593366.
  • Schumacher, M.A., Choi, K.Y., Zalkin, H., and Brennan, R.G. 1994. Crystal structure of LacI member, PurR, bound to DNA: Minor groove binding by α helices. Science 266: 763770.
  • Schumacher, M.A., Choi, K.Y., Lu, F., Zalkin, H., and Brennan, R.G. 1995. Mechanism of corepressor-mediated specific DNA binding by the purine repressor. Cell 83: 147155.
  • Slijper, M., Bonvin, A.M.J.J., Boelens, R., and Kaptein, R. 1996. Refined structure of lac repressor headpiece (1–56) determined by relaxation matrix calculations from 2D and 3D NOE data: Change of tertiary structure upon binding to the lac operator. J. Mol. Biol. 259: 761773.
  • Spott, S., Dong, F., Kisters-Woike, B., and Müller-Hill, B. 2000. Dimerisation mutants of lac repressor. II. A single amino acid substitution, D278L, changes the specificity of dimerisation. J. Mol. Biol. 296: 673684.
  • Suckow, J., Markiewicz, P., Kleina, L.G., Miller, J., Kisters-Woike, B., and Müller-Hill, B. 1996. Genetic studies of the lac repressor XV: 4000 Single amino acid substitutions and analysis of the resulting phenotypes on the basis of the protein structure. J. Mol. Biol. 261: 509522.
  • Swindells, M.B., Orengo, C.A., Jones, D.T., Hutchinson, E.G., and Thornton, J.M. 1998. Contemporary approaches to protein structure classification. Bioessays 20: 884891.
  • von Wilcken-Bergmann, B. and Müller-Hill, B. 1982. Sequence of galR gene indicates a common evolutionary origin of lac and gal repressor in Escherichia coli. Proc. Natl. Acad. Sci. 79: 24272431.
  • Vyas, N.K., Vyas, M.N., and Quiocho, F.A. 1988. Sugar and signal-transducer binding sites of the Escherichia coli galactose chemoreceptor protein. Science 242: 12901295.
  • Vyas, N.K., Vyas, M.N., and Quiocho, F.A. 1991. Comparison of the periplasmic receptors for L-arabinose, D-glucose/D-galactose, and D-ribose: Structural and functional similarity. J. Biol. Chem. 266: 52265237.
  • Weickert, M.J. and Adhya, S. 1992. A family of bacterial regulators homologous to Gal and Lac repressors. J. Biol. Chem. 267: 1586915874.
  • Wycuff, D.R. 1999. “Examination of the C-terminal assembly motif in lactose repressor.” Doctoral thesis. Rice University, Houston, Texas.