SEARCH

SEARCH BY CITATION

References

  • Abercrombie, B.D., Kneale, G.G., Crane Robinson, C., Bradbury, E.M., Goodwin, G.H., Walker, J.M., and Johns, E.W. 1978. Studies on the conformational properties of the high-mobility-group chromosomal protein HMG 17 and its interaction with DNA. Eur. J. Biochem. 84: 173177.
  • Adler, A.J., Greenfield, N.J., and Fasman, G.D. 1973. Circular dichroism and optical rotatory dispersion of proteins and polypeptides. Methods Enzymol. 27: 675735.
  • Agianian, B., Leonard, K., Bonte, E., Van der Zandt, H., Becker, P.B., and Tucker, P.A. 1999. The glutamine-rich domain of the Drosophila GAGA factor is necessary for amyloid fiber formation in vitro, but not for chromatin remodelling. J. Mol. Biol. 285: 527544.
  • Alber, T., Gilbert, W.A., Ponzi, D.R., and Petsko, G.A. 1982. The role of mobility in the substrate binding and catalytic machinery of enzymes. Ciba Found. Symp. 93: 424.
  • Alexandrescu, A.T., Abeygunawardana, C., and Shortle, D. 1994. Structure and dynamics of a denatured 131-residue fragment of staphylococcal nuclease: A heteronuclear NMR study. Biochemistry 33: 10631072.
  • Amit, A.G., Mariuzza, R.A., Phillips, S.E.V., and Dolyak, R.J. 1985. Three-dimensional structure of an antigen–antibody complex at 6 Å resolution. Nature 313: 156158.
  • Anfinsen, C.B., Haber, E., Sela, M., and White, F.N. 1961. Kinetics of formation of native ribonuclease during oxidation of the reduced polypeptide chain. Proc. Natl. Acad. Sci. 47: 13091314.
  • Anson, M.L. and Mirsky, A.E. 1932. The effect of denaturation on the viscosity of protein systems. J. Gen. Physiol. 15: 341350.
  • Aswad, D.W. and Greengard, P. 1981. A specific substrate from rabbit cerebellum for guanosine 3′:5′-monophosphate-dependent protein kinase. I. Purification and characterization. J. Biol. Chem. 256: 34873493.
  • Bai, Y., Chung, J., Dyson, H.J., and Wright, P.E. 2001. Structural and dynamic characterization of an unfolded state of poplar apo-plastocyanin formed under nondenaturing conditions. Protein Sci. 10: 10561066.
  • Baldwin, R.L. and Zimm, B.H. 2000. Are denatured proteins ever random coils? Proc. Natl. Acad. Sci. 97: 1239112392.
  • Baskakov, I. and Bolen, D.W. 1998. Forcing thermodynamically unfolded proteins to fold. J. Biol. Chem. 273: 48314834.
  • Baskakov, I.V., Kumar, R., Srinivasan, G., Ji, Y.S., Bolen, D.W., and Thompson, E.B. 1999. Trimethylamine N-oxide-induced cooperative folding of an intrinsically unfolded transcription-activating fragment of human glucocorticoid receptor. J. Biol. Chem. 274: 1069310696.
  • Baum, J., Dobson, C.M., Evans, P.A., and Hanly, C. 1989. Characterization of a partly folded protein by NMR methods: Studies on the molten globule state of guinea pig alpha-lactalbumin. Biochemistry 28: 713.
  • Belmont, L.D. and Mitchison, T.J. 1996. Identification of a protein that interacts with tubulin dimers and increases the catastrophe rate of microtubules. Cell 84: 623631.
  • Berkovits, H.J. and Berg, J.M. 1999. Metal and DNA binding properties of a two-domain fragment of neural zinc finger factor 1, a CCHC-type zinc binding protein. Biochemistry 38: 1682616830.
  • Bhattacharyya, J. and Das, K.P. 1999. Molecular chaperone-like properties of an unfolded protein, alpha(s)-casein. J. Biol. Chem. 274: 1550515509.
  • Bienkiewicz, E.A., Moon Woody, A., and Woody, R.W. 2000. Conformation of the RNA polymerase II C-terminal domain: Circular dichroism of long and short fragments. J. Mol. Biol. 297: 119133.
  • Bloomer, A.C., Champness, J.N., Bricogne, G., Staden, R., and Klug, A. 1978. A protein disk of tobacco mosaic virus at 2.8 Å resolution showing the interactions within and between subunits. Nature 276: 362368.
  • Bode, W., Schwager, P., and Huber, R. 1978. The transition of bovine trypsinogen to trypsin-like state upon strong ligand binding. The refined crystal structures of the bovine trypsinogen–pancreatic trypsin inhibitor complex and of its ternary complex with Ile-Val at 1.9 Å resolution. J. Mol. Biol. 118: 99112.
  • Bogdarina, I., Fox, D.G., and Kneale, G.G. 1998. Equilibrium and kinetic binding analysis of the N-terminal domain of the Pf1 gene 5 protein and its interaction with single-stranded DNA. J. Mol. Biol. 275: 443452.
  • Bose, H.S., Whittal, R.M., Baldwin, M.A., and Miller, W.L. 1999. The active form of the steroidogenic acute regulatory protein, StAR, appears to be a molten globule. Proc. Natl. Acad. Sci. 96: 72507255.
  • Bouvier, M. and Stafford, W.P. 2000. Probing the three-dimensional structure of human calreticulin. Biochemistry 39: 1495014959.
  • Bracken, C. 2001. NMR spin relaxation methods for characterization of disorder and folding in proteins. J. Mol. Graph. Model. 19: 312.
  • Bushnell, G.W., Louie, G.V., and Brayer, G.D. 1990. High-resolution three-dimensional structure of horse heart cytochromec. J. Mol. Biol. 214: 585595.
  • Campbell, K.M., Terrell, A.R., Laybourn, P.J., and Lumb, K. J. 2000. Intrinsic structural disorder of the C-terminal activation domain from the bZIP transcription factor Fos. Biochemistry 39: 27082713.
  • Cary, P.D., Crane Robinson, C., Bradbury, E.M., and Dixon, G.H. 1981. Structural studies of the non-histone chromosomal proteins HMG-T and H6 from trout testis. Eur. J. Biochem. 119: 545551.
  • Cary, P.D., King, D.S., Crane Robinson, C., Bradbury, E.M., Rabbani, A., Goodwin, G.H., and Johns, E.W. 1980. Structural studies on two high-mobility-group proteins from calf thymus, HMG-14 and HMG-20 (ubiquitin), and their interaction with DNA. Eur. J. Biochem. 112: 577580.
  • Chang, J.F., Phillips, K., Lundback, T., Gstaiger, M., Ladbury, J.E., and Luisi, B. 1999. Oct-1 POU and octamer DNA co-operate to recognise the Bob-1 transcription co-activator via induced folding. J. Mol. Biol. 288: 941952.
  • Cho, H.S., Liu, C.W., Damberger, F.F., Pelton, J.G., Nelson, H.C.M., and Wemmer, D.E. 1996. Yeast heat shock transcription factor N-terminal activation domains are unstructured as probed by heteronuclear NMR spectroscopy. Protein Sci. 5: 262269.
  • Choo, Y. and Schwabe, J.W. 1998. All wrapped up. Nat. Struct. Biol. 5: 253255.
  • Chyan, C.-L., Wormald, C., Dobson, C.M., Evans, P.A., and Baum, J. 1993. Structure and stability of the molten globule state of guinea-pig alpha-lactalbumin: A hydrogen exchange study. Biochemistry 32: 56815691.
  • Cozens, B. and Reithmeier, R.A. 1984. Size and shape of rabbit muscle calsequestrin. J. Biol. Chem. 259: 62486252.
  • Craig, T.A., Veenstra, T.D., Naylor, S., Tomlinson, A.J., Johnson, K.L., Macura, S., Juranic, N., and Kumar, R. 1997. Zinc binding properties of the DNA binding domain of the 1,25-dihydroxyvitamin D3 receptor. Biochemistry 36: 1048210491.
  • Daughdrill, G.W., Hanely, L.J., and Dahlquist, F.W. 1998. The C-terminal half of the anti-sigma factor FlgM contains a dynamic equilibrium solution structure favoring helical conformations. Biochemistry 37: 10761082.
  • Delmas, P.D., Stenner, D.D., Romberg, R.W., Riggs, B.L., and Mann, K.G. 1984. Immunochemical studies of conformational alterations in bone gamma-carboxyglutamic acid containing protein. Biochemistry 23: 47204725.
  • Demarest, S.J., Zhou, S.Q., Robblee, J., Fairman, R., Chu, B., and Raleigh, D.P. 2001. A comparative study of peptide models of the alpha-domain of alpha-lactalbumin, lysozyme, and alpha-lactalbumin/lysozyme chimeras allows the elucidation of critical factors that contribute to the ability to form stable partially folded states. Biochemistry 40: 21382147.
  • DiGiammarino, E.L., Filippov, I., Weber, J.D., Bothner, B., and Kriwacki, R.W. 2001. Solution structure of the p53 regulatory domain of the p19Arf tumor suppressor protein. Biochemistry 40: 23792386.
  • Dill, K.A. and Shortle, D. 1991. Denatured states of proteins. Annu. Rev. Biochem. 60: 795825.
  • Di Stasio, E., Sciandra, F., Maras, B., Di Tommaso, F., Petrucci, T.C., Giardina, B., and Brancaccio, A. 1999. Structural and functional analysis of the N-terminal extracellular region of beta-dystroglycan. Biochem. Biophys. Res. Commun. 266: 274278.
  • Donaldson, L. and Capone, J.P. 1992. Purification and characterization of the carboxyl-terminal transactivation domain of Vmw65 from herpes simplex virus type 1. J. Biol. Chem. 267: 14111414.
  • Donne, D.G., Viles, J.H., Groth, D., Mehlhorn, I., James, T. L., Cohen, F.E., Prusiner, S.B., Wright, P.E., and Dyson, H.J. 1997. Structure of the recombinant full-length hamster prion protein PrP(29–231): The N terminus is highly flexible. Proc. Natl. Acad. Sci. 94: 1345213457.
  • Dowd, T.L., Rosen, J.F., Mints, L., and Gundberg, C.M. 2001. The effect of Pb(2+) on the structure and hydroxyapatite binding properties of osteocalcin. Biochim. Biophys. Acta 1535: 153163.
  • Dunker, A.K., Garner, E., Guilliot, S., Romero, P., Albercht, K., Hart, J., Obradovic, Z., Kissinger, C., and Villafranca, J.E. 1998. Protein disorder and the evolution of molecular recognition: Theory, predictions and observations. Pac. Symp. Biocomput. 3: 473484.
  • Dunker, A.K., Lawson, J.D., Brown, C.J., Williams, R.M., Romero, P., Oh, J.S., Oldfield, C.J., Campen, A.M., Ratliff, C.M., Hipps, K.W., Ausio, J., Nissen, M.S., Reeves, R., Kang, C.-H., Kissinger, C.R., Bailey, R.W., Griswold, M.D., Chiu, W., Garber, E.C., and Obradovic, Z. 2001. Intrinsically disordered proteins. J. Mol. Graph. Model. 19: 2659.
  • Dunker, A.K., Obradovic, Z., Romero, P., Kissinger, C., and Villafranca, J.E. 1997. On the importance of being disordered. PDB Newslett. 81: 35.
  • Eliezer, D., Chiba, K., Tsuruta, H., Doniach, S., Hodgson, K.O., and Kihara, H. 1993. Evidence of an associative intermediate on the myoglobin refolding pathway. Biophys. J. 65: 912917.
  • Eliezer, D., Yao, J., Dyson, H.J., and Wright, P.E. 1998. Structural and dynamic characterization of partially folded states of myoglobin and implications for protein folding. Nat. Struct. Biol. 5: 148155.
  • Engel, J., Taylor, W., Paulsson, M., Sage, H., and Hogan, B. 1987. Calcium binding domains and calcium-induced conformational transition of SPARC/BM-40/osteonectin, an extracellular glycoprotein expressed in mineralized and nonmineralized tissues. Biochemistry 26: 69586965.
  • Eom, J.W., Baker, W.R., Kintanar, A., and Wurtele, E.S. 1996. The embryo-specific EMB-1 protein of Daucus carota is flexible and unstructured in solution. Plant Sci. 115: 1724.
  • Fasman, G.D. 1996. Circular dichroism and conformational analysis of biomolecules. Plenum Press, New York.
  • Feigin, L.A. and Svergun, D.I. 1987. Structural snalysis by small-angle X-ray and neutron scattering. Plenum Press, New York.
  • Ferre-D'Amare, A.R., Prendergast, G.C., Ziff, E.B., and Burley, S.K. 1993. Recognition by Max of its cognate DNA through a dimeric b/HLH/Z domain. Nature 363: 3845.
  • Fiebig, K.M., Rice, L.M., Pollock, E., and Brunger, A.T. 1999. Folding intermediates of SNARE complex assembly. Nat. Struct. Biol. 6: 117123.
  • Fischer, E. 1894. Einfluss der configuration auf die wirkung der enzyme. Ber. Dt. Chem. Ges. 27: 29852993.
  • Fisher, L.W., Torchia, D.A., Fohr, B., Young, M.F., and Fedarko, N.S. 2001. Flexible structures of SIBLING proteins, bone sialoprotein, and osteopontin. Biochem. Biophys. Res. Commun. 280: 460465.
  • Fletcher, C.M., McGuire, A.M., Gingras, A.C., Li, H., Matsuo, H., Sonenberg, N., and Wagner, G. 1998. 4E binding proteins inhibit the translation factor eIF4E without folded structure. Biochemistry 37: 915.
  • Flory, P.J. 1953. Principles of polymer chemistry. Cornell University Press, Ithaca, NY.
  • Fontana, A., Polverino de Laureto, P., and De Philipps, V. 1993. Molecular aspects of proteolysis of globular proteins. In Protein stability and stabilization (eds., W.van den Tweel, A.Harder, and M.Buitelear), pp. 101110. Elsevier Science, Amsterdam.
  • Fox, D.G., Cary, P.D., and Kneale, G.G. 1999. Conformational studies of the C-terminal domain of bacteriophage Pf1 gene 5 protein. Biochim. Biophys. Acta 1435: 138146.
  • Fujio, H., Takagaki, Y., Ha, Y. M., Doi, E.M., Soebandrio, A., and Sakato, N. 1985. Native and non-native conformation-specific antibodies directed to the loop region of hen egg-white lysozyme. J. Biochem. (Tokyo) 98: 949962.
  • Furie, B. and Furie, B.C. 1979. Conformation-specific antibodies as probes of the gamma-carboxyglutamic acid-rich region of bovine prothrombin. Studies of metal-induced structural changes. J. Biol. Chem. 254: 97669771.
  • Garner, E., Cannon, P., Romero, P., Obradovic, Z., and Dunker, A.K. 1998. Predicting disordered regions from amino acid sequence: Common themes despite different structural characterization. Genome Informatics 9: 201213.
  • Gast, K., Damaschun, H., Eckert, K., Schulze-Foster, K., Maurer, H.R., Müller-Frohne, M., Zirwer, D., Czarnecki, J., and Damaschun, G. 1995. Prothymosin α: A biologically active protein with random coil conformation. Biochemistry 34: 1321113218.
  • Gatewood, J.M., Schroth, G.P., Schmid, C.W., and Bradbury, E.M. 1990. Zinc-induced secondary structure transitions in human sperm protamines. J. Biol. Chem. 265: 2066720672.
  • Geyer, M., Munte, C. E., Schorr, J., Kellner, R., and Kalbitzer, H.R. 1999. Structure of the anchor-domain of myristoylated and non-myristoylated HIV-1 Nef protein. J. Mol. Biol. 289: 123138.
  • Gillespie, J.R. and Shortle, D. 1997a. Characterization of long-range structure in the denatured state of staphylococcal nuclease. I. Paramagnetic relaxation enhancement by nitroxide spin labels. J. Mol. Biol. 268: 158169.
  • Gillespie, J.R. and Shortle, D. 1997b. Characterization of long-range structure in the denatured state of staphylococcal nuclease. II. Distance restraints from paramagnetic relaxation and calculation of an ensemble of structures. J. Mol. Biol. 268: 170184.
  • Glatter, O. and Kratky, O. 1982. Small angle X-ray scattering. Academic Press, London.
  • Grossberg, A.Yu. and Khohlov, A.R. 1989. Statistical physics of macromolecules. Nauka, Moscow.
  • Grottesi, A., Sette, M., Palamara, T., Rotilio, G., Garaci, E., and Paci, M. 1998. The conformation of peptide thymosin alpha 1 in solution and in a membrane-like environment by circular dichroism and NMR spectroscopy. A possible model for its interaction with the lymphocyte membrane. Peptides 19: 17311738.
  • Guo, R.T., Chou, L.J., Chen, Y.C., Chen, C.Y., Pari, K., Jen, C.J., Lo, S.J., Huang, S.L., Lee, C.Y., Chang, T.W., and Chaung, W.J. 2001. Expression in Pichia pastoris and characterization by circular dichroism and NMR of rhodostomin. Proteins Struct. Funct. Genet. 43: 499508.
  • Hazzard, J., Sudhol, T.C., and Rizo, J. 1999. NMR analysis of the structure of synaptobrevin and of its interaction with syntaxin. J. Biomol. NMR 14: 203207.
  • He, Z., Dunker, A.K., Wesson, C.R., and Trumble, W.R. 1993. Ca(2+)-induced folding and aggregation of skeletal muscle sarcoplasmic reticulum calsequestrin. The involvement of the trifluoperazine-binding site. J. Biol. Chem. 268: 2463524641.
  • Hemmings, H.G. Jr., Nairin, A.C., Aswad, D.W., and Greengard, P. 1984. DARPP-32, a dopamine-and adenosine 3′:5′-monophosphate-regulated phosphoprotein enriched in dopamine-innervated brain regions. II. Purification and characterization of the phosphoprotein from bovine caudate nucleus. J. Biol. Chem. 4: 99110.
  • Henkels, C.H., Kurz, J.C., Fierke, C.A., and Oas, T.G. 2001. Linked folding and anion binding of the Bacillus subtilis ribonuclease P protein. Biochemistry 40: 27772789.
  • Hernández, M.A., Avila, J., and Andreu, J.M. 1986. Physicochemical characterization of the heat-stable microtubule-associated protein MAP2. Eur. J. Biochem. 154: 4148.
  • Hershey, P.E., McWhirter, S.M., Gross, J.D., Wagner, G., Alber, T., and Sachs, A.B. 1999. The Cap-binding protein eIF4E promotes folding of a functional domain of yeast translation initiation factor eIF4G1. J. Biol. Chem. 274: 2129721304.
  • Horiuchi, M., Kurihara, Y., Katahira, M., Maeda, T., Saito, T., and Uesugi, S. 1997. Dimerization and DNA binding facilitate alpha-helix formation of Max in solution. J. Biochem. (Tokyo) 122: 711716.
  • House-Pompeo, K., Xu, Y., Joh, D., Speziale, P., and Hook, M. 1996. Conformational changes in the fibronectin binding MSCRAMMs are induced by ligand binding. J. Biol. Chem. 271: 13791384.
  • Hubbard, S.J. 1998. The structural aspects of limited proteolysis of native proteins. Biochim. Biophys. Acta 1382: 191206.
  • Hubbard, S.J., Beynon, R.J., and Thornton, J.M. 1998. Assessment of conformational parameters as predictors of limited proteolytic sites in native protein structures. Protein Eng. 11: 349359.
  • Hubbard, S.J., Eisenmenger, F., and Thornton, J.M. 1994. Modeling studies of the change in conformation required for cleavage of limited proteolytic sites. Protein Sci. 3: 757768.
  • Huber, R. 1979. Conformational flexibility and its functional significance in some protein molecules. Trends Biochem. Sci. 4: 271276.
  • Huber, R. 1987. Flexibility and rigidity, requirements for the function of proteins and protein pigment complexes. Biochem. Soc. Trans. 15: 10091020.
  • Hughson, F.M., Wright, P.E., and Baldwin, R.L. 1990. Structural characterization of a partly folded apomyoglobin intermediate. Science 249: 15441548.
  • Iakoucheva, L.M., Kimzey, A.L., Masselon, C.D., Bruce, J.E., Garner, E.C., Brown, C.J., Dunker, A.K., Smith, R.D., and Ackerman, E.J. 2001. Identification of intrinsic order and disorder in the DNA repair protein XPA. Protein Sci. 10: 560571.
  • Isbell, D.T., Du, S., Schroering, A.G., Colombo, G., and Shelling, J.G. 1993. Metal ion binding to dog osteocalcin studied by 1H NMR spectroscopy. Biochemistry 32: 1135211362.
  • Jeng, M.F., Englander, S.W., Elöve, G.A., Wang, A.I., and Roder, H. 1990. Structural description of acid-denatured cytochrome c by hydrogen exchange and 2D NMR. Biochemistry 29: 1043310437.
  • Jimenez, M.A., Evangelio, J.A., Aranda, C., Lopez-Brauet, A., Andreu, D., Rico, M., Lagos, R., Andreu, J.M., and Monasterio, O. 1999. Helicity of alpha(404–451) and beta(394–445) tubulin C-terminal recombinant peptides. Protein Sci. 8: 788799.
  • Johansson, J., Gudmundsson, G.H., Rottenberg, M.E., Berndt, K.D., and Agerberth, B. 1998. Conformation-dependent antibacterial activity of the naturally occurring human peptide LL-37. J. Biol. Chem. 273: 37183724.
  • Johnson, W.C. Jr. 1988. Secondary structure of proteins through circular dichroism spectroscopy. Annu. Rev. Biophys. Chem. 17: 145166.
  • Josefsson, E., O'Connell, D., Foster, T.J., Durussel, I., and Cox, J.A. 1998. The binding of calcium to the B-repeat segment of SdrD, a cell surface protein of Staphylococcus aureus. J. Biol. Chem. 273: 3114531152.
  • Kanaya, E. and Kanaya, S. 1995. Reconstitution of Escherichia coli RNase HI from the N-fragment with high helicity and the C-fragment with a disordered structure. J. Biol. Chem. 270: 1985319860.
  • Kataoka, M., Hagihara, Y., Mihara, K., and Goto, Y. 1993. Molten globule of cytochrome c studied by small angle X-ray scattering. J. Mol. Biol. 229: 591596.
  • Kataoka, M., Kuwajima, K., Tokunaga, F., and Goto, Y. 1997. Structural characterization of the molten globule of alpha-lactalbumin by solution X-ray scattering. Protein Sci. 6: 422430.
  • Kelly, S.M. and Price, N.C. 1997. The application of circular dichroism to studies of protein folding and unfolding. Biochim. Biophys. Acta 1338: 161185.
  • Koepf, E.K., Petrassi, H.M., Ratnaswamy, G., Huff, M.E., Sudol, M., and Kelly, J.W. 1999. Characterization of the structure and function of W [RIGHTWARDS ARROW] F WW domain variants: Identification of a natively unfolded protein that folds upon ligand binding. Biochemistry 38: 1433814351.
  • Konno, T., Tanaka, N., Kataoka, M., Takano, E., and Maki, M. 1997. A circular dichroism study of preferential hydration and alcohol effects on a denatured protein, pig calpastatin domain I. Biochim. Biophys. Acta 1342: 7382.
  • Kostyukova, A., Maeda, K., Yamauchi, E., Krieger, I., and Maeda, Y. 2000. Domain structure of tropomodulin: Distinct properties of the N-terminal and C-terminal halves. Eur. J. Biochem. 267: 64706475.
  • Krebs, D., Dahmani, B., el Antri, S., Monnot, M., Convert, O., Mauffret, O., Troalen, F., and Fermandjian, S. 1995. The basic subdomain of the c-Jun oncoprotein. A joint CD, Fourier-transform infrared and NMR study. Eur. J. Biochem. 231: 370380.
    Direct Link:
  • Kriwacki, R.W., Hengst, L., Tennant, L., Reed, S.I., and Wright, P.E. 1996. Structural studies of p21Waf1/Cip1/Sdi1 in the free and Cdk2-bound state: Conformational disorder mediates binding diversity. Proc. Natl. Acad. Sci. 93: 1150411509.
  • Larsen, R.W., Yang, J., Hou, S., Helms, M.K., Jameson, D.M., and Alam, M. 1999. Spectroscopic characterization of two soluble transducers from the Archaeon Halobacterium salinarum. J. Protein Chem. 18: 269275.
  • Lewis, M., Chang, G., Horton, N.C., Kercher, M.A., Pace, H.C., Schumacher, M.A., Brennan, R.G., and Lu, P. 1996. Crystal structure of the lactose operon repressor and its complexes with DNA and inducer. Science 271: 12471254.
  • Li, X., Obradovic, Z., Brown, C.L., Garner, E., and Dunker, A.K. 2000. Comparing predictors of disordered protein. Genome Informatics 11: 172184.
  • Li, X., Romero, P., Rani, M., Dunker, A.K., and Obradovic, Z. 1999. Predicting protein disorders for N-, C-, and internal regions. Genome Informatics 10: 3040.
  • Lisse, T., Bartels, D., Kalbitzer, H.R., and Jaenicke, R. 1996. The recombinant dehydrin-like desiccation stress protein from the resurrection plant Craterostigma plantagineum displays no defined three-dimensional structure in its native state. Biol. Chem. 377: 555561.
  • Liu, D., Ishima, R., Tong, K.I., Bagby, S., Kokubo, T., Muhandiram, D. R., Kay, L.E., Nakatani, Y., and Ikura, M. 1998. Solution structure of a TBP-TAF(II)230 complex: Protein mimicry of the minor groove surface of the TATA box unwound by TBP. Cell 94: 573583.
  • Logan, T.M., Theriault, Y., and Fesik, S.W. 1994. Structural characterization of the FK506 binding protein unfolded in urea and guanidine hydrochloride. J. Mol. Biol. 236: 637648.
  • Loomis, R.E., Bergey, E.J., Levine, M.J., and Tabak, L.A. 1985. Circular dichroism and fluorescence spectroscopic analyses of a proline-rich glycoprotein from human parotid saliva. Int. J. Pept. Protein Res. 26: 621629.
  • Love, J.J. 1999. Biophysical characterization of HMG-1 box domain of the lymphoid enhancer binding factor-1. PhD. Thesis, University of California, San Diego.
  • Lydakis-Simantiris, N., Betts, S.D., and Yocum, C.F. 1999. Leucine 245 is a critical residue for folding and function of the manganese stabilizing protein of photosystem II. Biochemistry 38: 1552815535.
  • Lynch, W.P., Riseman, V.M., and Bretscher, A. 1987. Smooth muscle caldesmon is an extended flexible monomeric protein in solution that can readily undergo reversible intra- and intermolecular sulfhydryl cross-linking. A mechanism for caldesmon's F-actin bundling activity. J. Biol. Chem. 262: 74297437.
  • Lynn, A., Chandra, S., Malhotra, P., and Chauhan, V.S. 1999. Heme binding and polymerization by Plasmodium falciparum histidine rich protein II: Influence of pH on activity and conformation. conformation 459: 267271
  • Markus, G. 1965. Protein substrate conformation and proteolysis. Proc. Natl. Acad. Sci. 54: 253258.
  • McCaldon, P. and Argos, P. 1988. Oligopeptide biases in protein sequences and their use in predicting protein coding regions in nucleotide sequences. Proteins Struct. Funct. Genet. 4: 99122.
  • McCubbin, W.D. and Kay, C.M. 1985. Hydrodynamic and optical properties of the wheat EM protein. Can. J. Biochem. 63: 803810.
  • Meador, W.E., Means, A.R., and Quiocho, F.A. 1992. Target enzyme recognition by calmodulin: 2.4 A structure of a calmodulin–peptide complex. Science 257: 12511255.
  • Merrill, A.R., Cohen, F.S., and Cramer, W.A. 1990. On the nature of the structural change of the colicin E1 channel peptide necessary for its translocation-competent state. Biochemistry 29: 58295836.
  • Mikhalyi, E. 1978. Application of proteolytic enzymes to protein structure studies. CRC Press, Boca Raton, FL.
  • Mirsky, A.E. and Pauling, L. 1936. On the structure of native, denatured and coagulated proteins. Proc. Natl. Acad. Sci. 22: 439447.
  • Mogridge, J., Legault, P., Li, J., Van Oene, M. D., Kay, L.E., and Greenblatt, J. 1998. Independent ligand-induced folding of the RNA-binding domain and two functionally distinct antitermination regions in the phage lambda N protein. Mol. Cell 1: 265275.
  • Muchmore, S.W., Sattler, M., Liang, H., Meadows, R.P., Harlan, J.E., Yoon, H.S., Nettesheim, D., Chang, B.S., Thompson, C.B., Wong, S.L., Ng, S.L., and Fesik, S.W. 1996. X-ray and NMR structure of human Bcl-xL, an inhibitor of programmed cell death. Nature 381: 335341.
  • Mullen, G.P., Vaughn, J.B. Jr, and Mildvan, A.S. 1993. Sequential proton NMR resonance assignments, circular dichroism, and structural properties of a 50-residue substrate-binding peptide from DNA polymerase I. I 301: 174183
  • Nakano, M., Kasai, K., Yoshida, K., Tanimoto, T., Tamaki, Y., and Tobita, T. 1989. Conformation of the fowl protamine, galline, and its binding properties to DNA. J. Biochem. (Tokyo) 105: 133137.
  • Neurath, H., Greenstein, J.P., Putnam, F.W., and Erickson, J.O. 1944. The chemistry of protein denaturation. Chem. Rev. 34: 157265.
  • Nimmo, G.A. and Cohen, P. 1978. The regulation of glycogen metabolism. Purification and characterisation of protein phosphatase inhibitor-1 from rabbit skeletal muscle. Eur. J. Biochem. 87: 341351.
  • Pahel, G., Aulabaugh, A., Short, S.A., Barnes, J.A., Painter, G.R., Ray, P., and Phelps, W.C. 1993. Structural and functional characterization of the HPV16 E7 protein expressed in bacteria. J. Biol. Chem. 268: 2601826025.
  • Pappu, R.V., Srinivasan, R., and Rose, G.D. 2000. The Flory isolated-pair hypothesis is not valid for polypeptide chains: Implications for protein folding. Proc. Natl. Acad. Sci. 97: 1256512570.
  • Pelta, J., Berry, H., Fadda, G.C., Pauthe, E., and Lairez, D. 2000. Statistical conformation of human plasma fibronectin. Biochemistry 39: 51465154.
  • Penkett, C.J., Redfield, C., Dodd, I., Hubbard, J., McBay, D.L., Mossakowska D.E., Smith, R.A.G., Dobson, C.M., and Smith, L.J. 1997. NMR analysis of main chain conformational preferences in an unfolded fibronectin-binding protein. J. Mol. Biol. 274: 152159.
  • Plaxco, K.W. and Gross, M. 1997. The importance of being unfolded. Nature 386: 657659.
  • Polverini, E., Fasano, A., Zito, F., Riccio, P., and Cavatorta, P. 1999. Conformation of bovine myelin basic protein purified with bound lipids. Eur. Biophys. J. 28: 351355.
  • Pontius, B.W. 1993. Close encounters: Why unstructured, polymeric domains can increase rates of specific macromolecular association. Trends Biochem. Sci. 18: 181186.
  • Privalov, P.L. 1979. Stability of proteins: Small globular proteins. Adv. Protein Chem. 33: 167241.
  • Provencher, S.W. and Glöckner, J. 1981. Estimation of globular protein secondary structure from circular dichroism. Biochemistry 20: 3337.
  • Ptitsyn, O.B. 1995. Molten globule and protein folding. Adv. Protein Chem. 47: 83229.
  • Ptitsyn, O.B. and Uversky, V.N. 1994. The molten globule is a third thermodinamical state of protein molecules. FEBS Lett. 341: 1518.
  • Ratnaswamy, G., Koepf, E., Bekele, H., Yin, H., and Kelly, J.W. 1999. The amyloidogenicity of gelsolin is controlled by proteolysis and pH. Chem. Biol. 6: 293304.
  • Rice, L.M., Brennwald, P., and Brünger, A.T. 1997. Formation of a yeast SNARE complex is accompanied by significant structural changes. FEBS Lett. 415: 4955.
  • Richards, J.P., Bächinger, H.P., Goodman, R.H., and Brennan, R.G. 1996. Analysis of the structural properties of cAMP-responsive element-binding protein (CREB) and phosphorylated CREB. J. Biol. Chem. 271: 1371613723.
  • Romero, P., Obradovic, Z., and Dunker, A.K. 1998a. Sequence data analysis for long distorted regions prediction in the calcineurin family. Genome Informatics 8: 110124.
  • Romero, P., Obradovic, Z., and Dunker, A.K. 2001a. Intelligent data analysis for protein disorder prediction. Artif. Intell. Rev. 14: 447484.
  • Romero, P., Obradovic, Z., Kissinger, C., Villafranca, J.E., and Dunker, A.K. 1997. Identifying disordered regions in proteins from amino acid sequence. Proc IEEE Int. Conf. Neuronal Networks 1997 1: 9095.
  • Romero, P., Obradovic, Z., Kissinger, C., Villafranca, J.E, Garner, E., Guilliot, S., and Dunker, A.K. 1998b. Thousands of proteins likely to have long disordered regions. Pac. Symp. Biocomput. 3: 437448.
  • Romero, P., Obradovic, Z., Li, X., Garner, E.C., Brown, C.J., and Dunker, A.K. 2001b. Sequence complexity of disordered proteins. Protein Struct. Funct. Genet. 42: 3848.
  • Rosenfeld, P., Vajda, S., and DeLisi, C. 1995. Flexible docking and design. Annu. Rev. Biophys. Biomol. Struct. 24: 677700.
  • Schmitz, M.L., dos Santos Silva, M.A., Altmann, H., Czisch, M., Holak, T.A., and Baeuerle, P.A. 1994. Structural and functional analysis of the NF-kappa B p65 C terminus. An acidic and modular transactivation domain with the potential to adopt an alpha-helical conformation. conformation 269: 2561325620
  • Schulz, G.E. 1979. Nucleotide binding proteins. In Molecular mechanism of biological recognition (ed., M.Balaban), pp. 7994. Elsevier/North-Holland Biomedical Press, New York.
  • Schweers, O., Schönbrunn Hanebeck, E., Marx, A., and Mandelkow, E. 1994. Structural studies of tau protein and Alzheimer paired helical filaments show no evidence for beta-structure. J. Biol. Chem. 269: 2429024297.
  • Semisotnov, G.V., Kihara, H., Kotova, N.V., Kimura, K., Amemiya, Y., Wakabayashi, K., Serdyuk, I.N., Timchenko, A.A., Chiba, K., Nikaido, K., Ikura, T., and Kuwajima, K. 1996. Protein globularization during folding. A study by synchrotron small-angle X-ray scattering. J. Mol. Biol. 262: 559574.
  • Semisotnov, G.V., Rodionova, N.V., Razgulyaev, O.I., Uversky, V.N., Gripas, A.F., and Gilmanshin, R.I. 1991. Study of the “molten globule” intermediate state in protein folding by a hydrophobic fluorescent probe. Biopolymers 31: 119128.
  • Shortle, D. 1996. The denatured state (the other half of the folding equation) and its role in protein stability. FASEB J. 10: 2734.
  • Shortle, D. and Meeker, A.K. 1989. Residual structure in large fragments of staphylococcal nuclease: Effects of amino acid substitutions. Biochemistry 28: 936944.
  • Smyth, E., Syme, C.D., Blanch, E.W., Hecht, L., Vašák, M., Barron, L.D. 2001. Solution structure of native proteins with irregular folds from Raman optical activity. Biopolymers 58: 138151.
  • Song, M., Shao, H., Mujeeb, A., James, T.L., and Miller, W.L. 2001. Molten-globule structure and membrane binding of the N-terminal protease-resistant domain (63–193) of the steroidogenic acute regulatory protein (StAR). Biochem. J. 356: 151158.
  • Spolar, R.S. and Record, M.T. II 1994. Coupling of local folding to site-specific binding of proteins to DNA. Science 263: 777784.
  • Stellwagen, E., Rysary, R., and Babul, G. 1972. The conformation of horse heart apocytochromec. J. Biol. Chem. 247: 80748077.
  • Stewart, L., Ireton, G.C., Parker, L.H., Madden, K.R., and Champoux, J.J. 1996. Biochemical and biophysical analyses of recombinant forms of human topoisomerase I. J. Biol. Chem. 271: 75937601.
  • Suzuki, C., Kashiwagi, T., Tsuchiya, F., Kunishima, N., Morikawa, K., Nikkuni, S., and Arata, Y. 1997. Circular dichroism analysis of the interaction between the alpha and beta subunits in a killer toxin produced by a halotolerant yeast, Pichia farinosa. Protein Eng. 10: 99101.
  • Tanford, C. 1961. Physical chemistry of macromolecules. Wiley, New York.
  • Tanford, C. 1968. Protein denaturation. Adv. Protein Chem. 23: 121282.
  • Tangrea, M.A., Alexander, P., Bryan, P.N., Eisenstein, E., Toedt, J., and Orban, J. 2001. Stability and global fold of the mouse prohormone convertase 1 pro-domain. Biochemistry 40: 54885495.
  • Tarkka, T., Oikarinen, J., and Grundström, T. 1997. Nucleotide and calcium-induced conformational changes in histone H1. FEBS Lett. 406: 5660.
  • Tcherkasskaya, O. and Uversky, V.N. 2001. Denatured collapsed states in protein folding: Example of apomyoglobin. Proteins Struct. Funct. Genet. 44: 244254.
  • Tell, G., Perrone, L., Fabbro, D., Pellizzari, L., Pucillo, C., De Felice, M., Acquaviva, R., Formisano, S., and Damante, G. 1998. Structural and functional properties of the N transcriptional activation domain of thyroid transcription factor-1: Similarities with the acidic activation domains. Biochem. J. 329: 395403.
  • Thomas, J., Van Patten, S.M., Howard, P., Day, K.H., Mitchell, R.D., Sosnick, T., Trewhella, J., Walsh, D.A., and Maurer, R.A. 1991. Expression in Escherichia coli and characterization of the heat-stable inhibitor of the cAMP-dependent protein kinase. J. Biol. Chem. 266: 1090610911.
  • Timm, D.E., Vissavajjhala, P., Ross, A.H., and Neet, K.E. 1992. Spectroscopic and chemical studies of the interaction between nerve growth factor (NGF) and the extracellular domain of the low affinity NGF receptor. Protein Sci. 1: 10231031.
  • Uversky, V.N. 1993. Use of fast protein size-exclusion liquid chromatography to study the unfolding of proteins which denature through the molten globule. Biochemistry 32: 1328813298.
  • Uversky, V.N. 1994. Gel-permeation chromatography as a unique instrument for quantitative and qualitative analysis of protein denaturation and unfolding. Int. J. Bio-Chromatogr. 1: 103114.
  • Uversky, V.N. 1997. Diversity of compact forms of denatured globular proteins Protein. Pept. Lett. 4: 355367.
  • Uversky, V.N. 1998. How many molten globule states there exist? Biofizika (Moscow) 43: 416421.
  • Uversky, V.N. 1999. A multiparametric approach to studies of self-organization of globular proteins. Biochemistry (Moscow) 64: 250266.
  • Uversky, V.N. 2002. What does it mean to be natively unfolded? Eur. J. Biochem. 269: 212.
  • Uversky, V.N. and Ptitsyn O.B. 1994. “Partly folded” state, a new equilibrium state of protein molecules: Four-state guanidinium chloride-induced unfolding of β-lactamase at low temperature. Biochemistry 33: 27822791.
  • Uversky, V.N. and Ptitsyn, O.B. 1996a. Further evidence on the equilibrium “pre-molten globule state”: Four-state GdmCl-induced unfolding of carbonic anhydrase B at low temperature. J. Mol. Biol. 255: 215228.
  • Uversky, V.N. and Ptitsyn, O.B. 1996b. All-or-none solvent-induced transitions between native, molten globule and unfolded states in globular proteins. Fold. Design 1: 117122.
  • Uversky, V.N., Gillespie, J.R., and Fink, A.L. 2000a. Why are “natively unfolded” proteins unstructured under the physiological conditions? Proteins Struct. Funct. Genet. 41: 415427.
  • Uversky, V.N., Gillespie, J.R., Millett, I.S., Khodyakova, A.V., Vasiliev, A.M., Chernovskaya, T.V., Vasilenko, R.N., Kozlovskaya, G.D., Dolgikh, D.A., Doniach, S., Fink, A.L., and Abramov, V.M. 1999. “Natively unfolded” human prothymosin α adopts partially-folded conformation at acidic pH. Biochemistry 38: 1500915016.
  • Uversky, V.N., Gillespie, J.R., Millett, I.S., Khodyakova, A.V., Vasilenko, R.N., Vasiliev, A.M., Rodionov, I.L., Kozlovskaya, G.D., Dolgikh, D.A., Doniach, S., Fink, A.L., Permyakov, E.A., and Abramov, V.M. 2000b. Zn2+-mediated structure formation and compaction of the “natively unfolded” human prothymosin α. Biochem. Biophys. Res. Comunun. 267: 663668.
  • Uversky, V.N., Karnoup, A.S., Segel, D.J., Seshadri, S., Doniach, S., and Fink, A.L. 1998. Anion-induced folding of Staphylococcal nuclease: Characterization of multiple partially folded intermediates. J. Mol. Biol. 278: 879894.
  • Uversky, V.N., Li, J., and Fink, A.L. 2001a. Metal-triggered structural transformations, aggregation and fibril formation of human α-synuclein. A possible molecular link between Parkinson's disease and heavy metal exposure. J. Biol. Chem. 276: 4428444296.
  • Uversky, V.N., Li, J., and Fink, A.L. 2001b. Evidence for a partially-folded intermediate in α-synuclein fibrillation. J. Biol. Chem. 276: 1073710744.
  • Uversky, V.N., Permyakov, S.E., Zagranichny, V.E., Rodionov, I.L., Fink, A.L., Cherskaya, A.M., Wasserman, L.A., and Permyakov, E.A. 2002. Effect of zinc and temperature on the conformation of the γ subunit of retinal phosphodiesterase: A natively unfolded protein. J. Proteome Res. In press.
  • Uversky, V.N., Winter, S., and Löber, G. 1996. Use of fluorescence decay times of 8-ANS–protein complexes to study the conformational transitions in proteins which unfold through the molten globule state. Biophys. Chem. 60: 7988.
  • Venyaminov, S.Yu., Gudkov, A.T., Gogia, Z.V., and Tumanova, L.G. 1981. Absorption and Circular Dichroism Spectra of Individual Proteins from Escherichia Coli Ribosomes. Pushchino, Russia.
  • Weinreb, P.H., Zhen, W., Poon, A.W., Conway, K.A., and Lansbury, P.T. Jr. 1996. NACP, a protein implicated in Alzheimer's diseases and learning, is natively unfolded. Biochemistry 35: 1370913715.
  • Weiss, M.A., Ellenberger, T., Wobbe, C.R., Lee, J.P., Harrison, S.C., and Struhl, K. 1990. Folding transition in the DNA-binding domain of GCN4 on specific binding to DNA. Nature 347: 575578.
  • Williams, P.D., Pollock, D.D., and Goldstein, R.A. 2001. Evolution of functionality in lattice proteins. J. Mol. Graph. Model. 19: 150156.
  • Willis, K.J. 1994. Interaction with model membrane systems induces secondary structure in amino-terminal fragments of parathyroid hormone related protein. Int. J. Pept. Protein Res. 43: 2328.
  • Wilson, I.A., Haft, D.H., Getzoff, E.D., Tainer, J.A., Lerner, R.A., and Brenner, S. 1985. Identical short peptide sequences in unrelated proteins can have different conformations: A testing ground for theories of immune recognition. Proc. Natl. Acad. Sci. 82: 52555259.
  • Woody, R.W. 1995. Circular dichroism. Methods Enzymol. 246: 3471.
  • Wootton, J.C. 1993. Statistics of local complexity in amino acid sequence and sequence databases. Comput. Chem. 17: 149163.
  • Wootton, J.C. 1994. Non-globular domains in protein sequences: Automated segmentation using complexity measures. Comput. Chem. 18: 269285.
  • Wootton, J.C. and Federhen, S. 1996. Analysis of compositionally biased regions in sequence databases. Methods Enzymol. 266: 554571.
  • Worbs, M., Huber, R., and Wahl, M.C. 2000. Crystal structure of ribosomal protein L4 shows RNA-binding sites for ribosome incorporation and feedback control of the S10 operon. EMBO J. 19: 807818.
  • Wright, P.E. and Dyson, H.J. 1999. Intrinsically unstructured proteins: Re-assessing the protein structure–function paradigm. J. Mol. Biol. 293: 321331.
  • Wu, L.C., Laub, P.B., Elöve, G.A., Carey, J., and Roder, H. 1993. A noncovalent peptide complex as a model for an early folding intermediate of cytochromec. Biochemistry 32: 1027110276.
  • Yoo, S.H. 1995. pH- and Ca(2+)-induced conformational change and aggregation of chromogranin B. Comparison with chromogranin A and implication in secretory vesicle biogenesis. J. Biol. Chem. 270: 1257812583.
  • Yoo, S.H. and Albanesi, J.P. 1990. Ca2(+)-induced conformational change and aggregation of chromogranin A. J. Biol. Chem. 265: 1441414421.
  • Yusupov, M.M., Yusupova, G.Z., Baucom, A., Lieberman, K., Earnest, T.N., Cate, J.H., and Noller, H.F. 2001. Crystal structure of the ribosome at 5.5 A resolution. Science 292: 883896.
  • Zhang, J. and Matthews, C.R. 1998. Ligand binding is the principal determinant of stability for the p21H-ras protein. Biochemistry 37: 1488114890.
  • Zhang, O., Kay, L.E., Olivier, J.P., and Forman-Kay, J.D. 1994. Backbone 1H and 15N resonance assignments of the N-terminal SH3 domain of drk in folded and unfolded states using enhanced-sensitivity pulsed field gradient NMR techniques. J. Biomol. NMR 4: 845858.
  • Zheng, R., Jenkins, T.M., and Craigie, R. 1996. Zinc folds the N-terminal domain of HIV-1 integrase, promotes multimerization, and enhances catalytic activity. Proc. Natl. Acad. Sci. 93: 1365913664.
  • Zhou, P., Lugovskoy, A.A., McCarty, J.S., Li, P., and Wagner, G. 2001. Solution structure of DFF40 and DFF45 N-terminal domain complex and mutual chaperone activity of DFF40 and DFF45. Proc. Natl. Acad. Sci. 98: 60516055.