SEARCH

SEARCH BY CITATION

References

  • Arunachalam, B., Phan, U.T., Geuze, H.J., and Cresswell, P. 2000. Enzymatic reduction of disulphide bonds in lysosomes: Characterization of a Gamma-interferon-inducible lysosomal thiol reductase (GILT). Proc. Natl. Acad. Sci. USA 97: 747750.
  • Ayers, D.C., Athanasou, N.A., Woods, C.G., and Duthie, R.B. 1993. Dialysis arthropathy of the hip. Clin. Orthopaed. Rel. Res. 290: 216224.
  • Bellotti, V., Stoppini, M., Mangione, P., Sunde, M., Robinson, C., Asti, L., Brancaccio, D., and Ferri, G. 1998. Beta-2-microglobulin can be refolded into a native state from ex vivo amyloid fibrils. Eur. J. Biochem. 258: 6167.
  • Berggard, I. and Bearn, A.G. 1968. Isolation and properties of a low molecular weight β2-globulin occurring in human biological fluids. J. Biol. Chem. 243: 40954103.
  • Bjorkman, P.J., Saper, M.A., Samaoui, B., Bennett, W.S., Strominger, J.L., and Wiley, D.C. 1987. Structure of the human class I histocompatibity antigen, HLA-A2. Nature 329: 506512.
  • Booth, D.R., Sunde, M., Bellotti, V., Robinson, C.V., Hutchinson, W.L., Fraser, P.E., Hawkins, P.N., Dobson, C.M., Radford, S.E., Blake, C.C.F., and Pepys, M.B. 1997. Instability, unfolding and aggregation of human lysozyme variants underlying amyloid fibrillogenesis. Nature 385: 787793.
  • Bouchard, M., Zurdo, J., Nettleton, E.J., Dobson, C.M., and Robinson, C.V. 2000. Formation of insulin amyloid fibrils followed by FTIR simultaneosly with CD and electron microscopy. Protein Sci. 9: 19601967.
  • Bowden, N.B., Weck, M., Choi, I.S., and Whitesides, G.M. 2001. Molecule-mimetic chemistry and mesoscale self-assembly. Acc. Che. Res. 34: 231238.
  • Brancaccio, D., Ghiggeri, G.M., Braidotti, P., Garberi, A., Gallieni, M., Bellotti, V., Zoni, U., Gusmano, R., and Coggi, G. 1995. Deposition of kappa-light-chains and lambda-light-chains in amyloid filaments of dialysis-related amyloidosis. J. Am. Soc. Neph. 6: 12621270.
  • Campistol, J.M., Bernard, D., Papastoitsis, G., Sole, M., Kasirsky, J., and Skinner, M. 1996. Polymerization of normal and intact beta 2-microglobulin as the amyloidogenic protein in dialysis-amyloidosis. Kidney Int. 50: 12621267.
  • Chiti, F., Webster, P., Taddei, N., Clark, A., Stefani, M., Ramponi, G., and Dobson, C.M. 1999. Designing conditions for in vitro formation of amyloid protofilaments and fibrils. Proc. Natl. Acad. Sci. 96: 35903594.
  • Colfen, H., Harding, S.E., Wilson, E.K., Packman, L.C., and Scrutton, N.S. 1996. Homodimeric and expanded behavior of trimethylamine dehydrogenase in solution at different temperatures. Eur. Biophys. J. 24: 159164.
  • Connors, L.H., Shirahama, T., Skinner, M., Fenves, A., and Cohen, A.S. 1985. in vitro formation of amyloid fibrils from intact beta 2-microglobulin. Biochem. Biophys. Res. Comm. 131: 10631068.
  • Esposito, G., Michelutti, R., Verdone, G., Viglino, P., Herandez, H., Robinson, C.V., Amoresano, A., Dal Plaz, F., Monti, M., Pucci, P., et al. 2000. Removal of the N-terminal hexapeptide from human beta-2-microglobulin facilitates protein aggregation and fibril formation. Protein Sci. 9: 831845.
  • Floege, J. and Ehlerding, G. 1996. Beta 2-microglobulin associated amyloidosis. Clin. Issues in Nephrol. 72: 926.
  • Frisch, C., Kolmar, H., Schmidt, A., Kleemann, G., Reinhardt, A., Pohl, E., Uson, I., Schneider, T.R., and Fritz, H.J. 1996. Contribution of the intramolecular disulfide bridge to the folding stability of REI(v), the variable domain of a human immunoglobulin kappa light chain. Folding & Design 1: 431440.
  • Gejyo, F., Homma, N., Suzuki, Y., and Arakawa, M. 1986. Serum levels of beta-2-microglobulin as a new form of amyloid protein in patients undergoing long-term hemodialysis. N. Engl. J. Med. 314: 585586.
  • Gejyo, F., Kazama, J.J., Hasegawa, S., Nishi, S., Arakawa, M., and Odano, I. 1995. 131I-beta-2-microglobulin scintigraphy in patients with dialysis amyloidosis. Clin. Nephrol. 44 (Suppl 1): S14S18.
  • Glenner, G.G. 1980. Amyloid deposits and amyloidosis. The beta-fibrilloses. N. Engl. J. Med. 302: 12831292.
  • Goldsbury, C.S., Cooper, G.J.S., Goldie, K.N., Muller, S.A., Saafi, E.L., Gruijters, W.T.M., and Misur, M.P. 1997. Polymorphic fibrillar assembly of human amylin. J. Struct. Biol. 119: 1727.
  • Guex, N. and Peitsch, M.C. 1997. Swiss-Model and the Swiss-Pdb Viewer: An enviroment for comparative protien modeling. Electrophoresis 18: 27142723.
  • Guijarro, J.I., Sunde, M., Jones, J.A., Campbell, I.D., and Dobson, C.M. 1998. Amyloid fibril formation by an SH3 domain. Proc. Natl. Acad. Sci. 95: 42244228.
  • Helms, L.R., and Wetzel, R. 1996. Specificity of abnormal assembly in immunoglobulin light chain deposition disease and amyloidosis. J. Mol. Biol. 257:7786.
  • Hou, F.F., Miyata, T., Boyce, J., Yuan, Q., Chertow, G.M., Kay, J., Schmidt, A.M., and Owen, W.F. 2001a. Beta-2-microglobulin modified with advanced glycation end products delays monocyte apoptosis. Kindey Int. 59: 9901002.
  • Hou, F.F., Reddan, D.N., Seng, W.K., and Owen, W.F. 2001b. Pathogenesis of beta-2-microglobulin amyloidosis: Role of monocytes/macrophages. Semin. Dial. 14: 135139.
  • Inoue, S., Kuroiwa, M., Ohashi, K., Hara, M., and Kisilevsky, R. 1997. Ultrastructural organization of hemodialysis-associated beta-2-microglobulin amyloid fibrils. Kidney Int. 52: 15431549.
  • Isenman, D.E., Painter, R.H., and Dorrington, K.J. 1975. The structure and function of immunoglobulin domains: Studies with beta-2-microglobulin on the role of the intrachain disulfide bond. Proc. Natl. Acad. Sci. 72: 548552.
  • Jimenez, J.L., Guijarro, J.L., Orlova, E., Zurdo, J., Dobson, C.M., Sunde, M., and Saibil, H.R. 1999. Cryo-electron microscopy structure of an SH3 amyloid fibril and model of the molecular packing. EMBO J. 18: 815821.
  • Klafki, H.W., Pick, A.I., Pardowitz, I., Cole, T., Awni, L.A., Barnikol, H.U., Mayer, F., Kratzin, H.D., and Hilschmann, N. 1993. Reduction of disulphide bonds in an amyloidogenic Bence Jones protein leads to formation of amyloid-like fibrils in-vitro. Biol. Chem. Hoppe-Seyler 374: 11171122.
  • Klunk, W.E., Jacob, R.F., and Mason, R.P. 1999. Quantifying amyloid beta-peptide (Ab) aggregation using the Congo red Ab (CR-Ab) spectrophotometric assay. Anal. Biochem. 266: 6676.
  • Kocisko, D.A., Lansbury, P.T., and Caughey, B. 1996. Partial unfolding and refolding of scrapie-associated prion protein: Evidence for a critical 16-kDa C-terminal domain. Biochemistry 35: 1343413442.
  • Lai, Z.H., Colon, W., and Kelly, J.W. 1996. The acid-mediated denaturation pathway of transthyretin yields a conformational intermediate that can self-assemble into amyloid. Biochemistry 35: 64706482.
  • Lansbury, P.T. Jr. 1999. Evolution of amyloid: What normal protein folding may tell us about fibrillogenesis and disease. Proc. Natl. Acad. Sci. 96: 33423344.
  • McParland, V.J., Kad, N.M., Kalverda, A.P., Brown, A., Kirwin-Jones, P., Hunter, M.G., Sunde, M., and Radford, S.E. 2000. Partially unfolded states of beta-2-microglobulin and amyloid formation in vitro. Biochemistry 39: 87358746.
  • Morgan, C.J., Gelfand, M., Ateya, C., and Miranker, A.D. 2001. Kidney dialysis-associated amyloidosis: A molecular role for copper in fiber formation. J. Mol. Biol. 309: 339345.
  • Naiki, H., Higuchi, K., Hosokawa, M., and Takeda, T. 1989. Fluorometric-determination of amyloid fibrils in vitro using the fluorescent dye, Thioflavin-T. Anal. Biochem. 177: 244249.
  • Naiki, H., Hashimoto, N., Suzuki, S., Kimura, H., Nakakuki, K., and Gejyo, F. 1997. Establishment of a kinetic model of dialysis-related amyloid fibril extension in vitro. Amyloid-Inter. J. Exp. Clin. Inv. 4: 223232.
  • Nishi, S., Ogino, S., Maruyama, Y., Honma, N., Gejyo, F., Morita, T., and Arakawa, M. 1990. Electron-microscopic and immunohistochemical study of beta-2-microglobulin-related amyloidosis. Nephron 56: 357363.
  • Ohashi, K., Hara, M., Kawai, R., Ogura, Y., Honda, K., Nihei, H., and Mimura, N. 1992. Cervical disks are most susceptible to beta-2-microglobulin amyloid deposition in the vertebral column. Kidney Int. 41: 16461652.
  • Okon, M., Bray, P., and Vucelic, D. 1992. 1H-NMR assignments and secondary structure of human beta-2-microglobulin in solution. Biochemistry 31: 89068915.
  • Ono, K. and Uchino, F. 1994. Formation of amyloid-like substance from beta-2-microglobulin in vitro. Nephron 66: 404407.
  • Perfetti, V., Ubbiali, P., and Vignarelli, M.C. 1998. Evidence that amyloidogenic light chains undergo antigen-driven selection. Blood 91: 29482954.
  • Raffen, R., Dieckman, L.J., Szpunar, M., Wunschl, C., Pokkuluri, P.R., Dave, P., Stevens, P.W., Cai, X.Y., Schiffer, M., and Stevens, F.J. 1999. Physicochemical consequences of amino acid variations that contribute to fibril formation by immunoglobulin light chains. Protein Sci. 8: 509517.
  • Ritz, E. and Zeier, M. 1996. Beta-2-microglobulin associated amyloidosis. Clin. Issues Nephrol. 72: 926.
  • Stevens, F.J., Pokkuluri, P.R., and Schiffer, M. 2000. Protein conformations and disease: Pathological consequences of analogous mutations in homologous proteins. Biochemistry 39: 1529115296.
  • Sunde, M. and Blake, C. 1997. The structure of amyloid fibrils by electron microscopy and X-ray diffraction. Adv. Protein Chem. 50: 123159.
  • Sunde, M., Serpell, L.C., Bartlam, M., Fraser, P.E., Pepys, M.B., and Blake, C.C.F. 1997. Common core structure of amyloid fibrils by synchrotron X-ray diffraction. J. Mol. Biol. 273: 729739.
  • Swietnicki, W., Petersen, R., Gambetti, P., and Surewicz, W.K. 1997. pH-dependent stability and conformation of the recombinant human prion protein PrP(90–231). J. Biol. Chem. 272: 2751727520.
  • Swietnicki, W., Morillas, M., Chen, S.G., Gambetti, P., and Surewicz, W.K. 2000. Aggregation and fibrillisation of the recombinant human prion protein huPrP90–231. Biochemistry 39: 424431.
  • Van Ypersele, C. and Drucke, T.B. 1996. Chapter two: Various clinical types of amyloidosis. In Dialysis Amyloid. pp. 3468. Oxford University Press, UK.
  • Whitesides, G.M., Mathias, J.P., and Seto, C.T. 1991. Molecular self-assembly and nanochemistry: A chemical strategy for the synthesis of nanostructures. Science 254: 13121319.
  • Woody, R.W. 1995. Circular-dichroism. Methods in Enzymol. 246: 3471.