SEARCH

SEARCH BY CITATION

References

  • Ago, H., Kitagawa, Y., Fujishima, A., Matsuura, Y., and Katsube, Y. 1991. Crystal structure of basic fibroblast growth factor at 1.6 A resolution. J. Biochem. (Tokyo) 110:360363.
  • Baldwin, E., Xu, J., Hajiseyedjavadi, O., Baase, W.A., and Matthews, B.W. 1996. Thermodynamic and structural compensation in “size-switch” core repacking variants of bacteriophage T4 lysozyme. J. Mol. Biol. 259: 542559.
  • Baldwin, E.P., Hajiseyedjavadi, O., Baase, W.A., and Matthews, B.W. 1993. The role of backbone flexibility in the accommodation of variants that repack the core of T4 lysozyme. Science 262: 17151718.
  • Bennett, M.J., Schlunegger, M.P., and Eisenberg, D. 1995. 3D Domain swapping: A mechanism for oligomer assembly. Protein Sci. 4: 24552468.
  • Blaber, M., DiSalvo, J., and Thomas, K.A. 1996. X-ray crystal structure of human acidic fibroblast growth factor. Biochemistry 35: 20862094.
  • Blaber, S.I., Culajay, J.F., Khurana, A., and Blaber, M. 1999. Reversible thermal denaturation of human FGF-1 induced by low concentrations of guanidine hydrochloride. Biophys. J. 77: 470477.
  • Brunger, A.T. 1992. Free R value: A novel statistical quantity for assessing the accuracy of crystal structures. Nature 355: 472475.
  • Chan, H.S., Bromberg, S., and Dill, K.A. 1995. Models of cooperativity in protein folding. Philos. Trans. R. Soc. Lond. B. Biol. Sci 348: 6170.
  • Chi, Y.-H., Kumar, T.K.S., Wang, H.-M., Ho, M.-C., Chiu, I.-M., and Yu, C. 2001. Thermodynamic characterization of the human acidic fibroblast growth factor: Evidence for cold denaturation. Biochemistry 40: 77467753.
  • Connolly, M.L. 1993. The molecular surface package. J. Mol. Graph. 11: 139141.
  • Culajay, J.F., Blaber, S.I., Khurana, A., and Blaber, M. 2000. Thermodynamic characterization of mutants of human fibroblast growth factor 1 with an increased physiological half-life. Biochemistry 39: 71537158.
  • Dao-pin, S., Alber, T., Baase, W.A., Wozniak, J.A., and Matthews, B.W. 1991. Structural and thermodynamic analysis of the packing of two α-helices in bacteriophage T4 lysozyme. J. Mol. Biol. 221: 647667.
  • Edelhoch, H. 1967. Spectroscopic determination of tryptophan and tyrosine in proteins. Biochemistry 6: 19481954.
  • Emsley, P., Fotinou, C., Black, I., Fairweather, N.F., Charles, I.G., Watts, C., Hewitt, E., and Isaacs, N.W. 2000. The structures of the H(C) fragment of tetanus toxin with carbohydrate subunit complexes provide insight into ganglioside binding. J. Biol. Chem. 275: 88898894.
  • Eriksson, A.E., Baase, W.A., Zhang, X.-J., Heinz, D.W., Blaber, M., Baldwin, E.P., and Matthews, B.W. 1992. Response of a protein structure to cavity-creating mutations and its relation to the hydrophobic effect. Science 255: 178183.
  • Eriksson, A.E., Cousens, L.S., Weaver, L.H., and Matthews, B.W. 1991. Three-dimensional structure of human basic fibroblast growth factor. Proc. Natl. Acad. Sci. 88: 34413445.
  • Estape, D. and Rinas, U. 1999. Folding kinetics of the all-β-sheet protein human basic fibroblast growth factor, a structural homolog of interleukin-1β. J. Biol. Chem. 274: 3408334088.
  • Fauchere, J.-L. and Pliska, V. 1983. Hydrophobic parameters π of amino acid side-chains from the partitioning of N-acetyl-amino-acid amides. Eur. J. Med. Chem. 18: 369375.
  • Freire, E. and Biltonen, R.L. 1978. Statistical mechanical deconvolution of thermal transitions in macromolecules. I. Theory and application to homgeneous systems. Biopolymers 17: 463479.
  • Gassner, N.C., Baase, W.A., and Matthews, B.W. 1996. A test of the “jigsaw puzzle” model for protein folding by multiple methionine substitutions within the core of T4 lysozyme. Proc. Natl. Acad. Sci. 93: 1215512158.
  • Gill, S.C. and von Hippel, P.H. 1989. Calculation of protein extinction coefficients from amino acid sequence data. Anal. Biochem. 182: 319326.
  • Gimenez-Gallego, G., Conn, G., Hatcher, V.B., and Thomas, K.A. 1986. The complete amino acid sequence of human brain-derived acidic fibroblast growth factor. Biochem. Biophys. Res. Commun. 128: 611617.
  • Graves, B.J., Hatada, M.H., Hendrickson, W.A., Miller, J.K., Madison, V.S., and Satow, Y. 1990. Structure of interleukin 1α at 2.7 angstrom resolution. Biochemistry 29: 26792684.
  • Grek, S.B., Davis, J.K., and Blaber, M. 2001. An efficient, flexible-model program for the analysis of differential scanning calorimetry data. Protein and Peptide Letters (in press).
  • Habazettl, J., Gondol, D., Wiltscheck, R., Otlewski, J., Schleicher, M., and Holak, T.A. 1992. Structure of hisactophilin is similar to interleukin-1β and fibroblast growth factor. Nature 359: 855858.
  • Heidary, D.K., Gross, L.A., Roy, M., and Jennings, P.A. 1997. Evidence for an obligatory intermediate in the folding of Interleukin-1β. Nat. Struct. Biol. 4: 725731.
  • Hurley, J.H., Baase, W.A., and Matthews, B.W. 1992. Design and structural analysis of alternative hydrophobic core packing arrangements in bacteriophage T4 lysozyme. J. Mol. Biol. 224: 11431159.
  • Jiang, X., Kowalski, J., and Kelly, J.W. 2001. Increasing protein stability using a rational approach combining sequence homology and structural alignment: Stabilizing the WW domain. Protein Sci. 10: 14541465.
  • Jones, T.A., Zou, J.Y., Cowan, S.W., and Kjeldgaard, M. 1991. Improved methods for the building of protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A47: 110119.
  • Kaneko, S., Kuno, A., Fujimoto, Z., Shimizu, D., Machida, S., Sato, Y., Yura, K., Go, M., Mizuno, H., Taira, K., Kusakabe, I., and Hayashi, K. 1999. An investigation of the nature and function of module 10 in a family F/10 xylanase FXYN of Streptomyces olivaceoviridis E-86 by module shuffling with the Cex of Cellulomonas fimi and by site-directed mutagenesis. FEBS Lett. 460: 6166.
  • Karpusas, M., Baase, W.A., Matsumura, M., and Matthews, B.W. 1989. Hydrophobic packing in T4 lysozyme probed by cavity-filling mutants. Proc. Natl. Acad. Sci. 86: 82378241.
  • Kidokoro, S.-I. and Wada, A. 1987. Determination of thermodynamic functions from scanning calorimetry data. Biopolymers 26: 213229.
  • Krauspenhaar, R., Eschenburg, S., Perbandt, M., Kornilov, V., Konareva, N., Mikailova, I., Stoeva, S., Wacker, R., Maier, T., Singh, T., Mikhailov, A., Voelter, W., and Betzel, C. 1999. Crystal structure of mistletoe lectin I from Viscum album. Biochem. Biophys. Res. Commun. 257: 418424.
  • Lacy, D.B., Tepp, W., Cohen, A.C., DasGupta, B.R., and Stevens, R.C. 1998. Crystal structure of botulinum neurotoxin type A and implications for toxicity. Nat. Struct. Biol. 5: 898902.
  • Lim, W.A., Farruggio, D.C., and Sauer, R.T. 1992. Structural and energetic consequences of disruptive mutations in a protein core. Biochemistry 31: 43244333.
  • Lim, W.A., Hodel, A., Sauer, R.T., and Richards, F.M. 1994. The crystal structure of a mutant protein with altered but improved hydrophobic core packing. Proc. Natl. Acad. Sci. 91: 423427.
  • Linemeyer, D.L., Menke, J.G., Kelly, L.J., Disalvo, J., Soderman, D., Schaeffer, M.-T., Ortega, S., Gimenez-Gallego, G., and Thomas, K.A. 1990. Disulfide bonds are neither required, present, nor compatible with full activity of human recombinant acidic fibroblast growth factor. Growth Factors 3: 287298.
  • Liu, R., Baase, W.A., and Matthews, B.W. 2000a. The introduction of strain and its effects on the structure and stability of T4 lysozyme. J. Mol. Biol. 295: 127145.
  • Liu, Y., Chirino, A.J., Misulovin, Z., Leteux, C., Feizi, T., Nussenzweig, M.C., and Bjorkman, P.J. 2000b. Crystal structure of the cysteine-rich domain of mannose receptor complexed with a sulfated carbohydrate ligand. J. Exp. Med. 191: 11051116.
  • Makhatadze, G.I., Clore, G.M., Gronenborn, A.M., and Privalov, P.L. 1994. Thermodynamics of unfolding of the all β-Sheet protein interleukin-1β. Biochemistry 33: 93279332.
  • Mayr, E.M., Jaenicke, R., and Glockshuber, R. 1997. The domains in gammaB-crystallin: Identical fold—different stabilities. J. Mol. Biol. 269: 260269.
  • Mukhopadhyay, D. 2000. The molecular evolutionary history of a winged bean α-chymotrypsin inhibitor and modeling of its mutations through structural analysis. J. Mol. Evol. 50: 214223.
  • Murzin, A.G., Lesk, A.M., and Chothia, C. 1992. β-Trefoil fold. Patterns of structure and sequence in the kunitz inhibitors interleukins-1β and 1α and fibroblast growth factors. J. Mol. Biol. 223: 531543.
  • Onesti, S., Brick, P., and Blow, D.M. 1991. Crystal structure of a Kunitz-type trypsin inhibitor from Erythrina caffra seeds. J. Mol. Biol. 217: 153176.
  • Orengo, C.A., Jones, D.T., and Thornton, J.M. 1994. Protein superfamilies and domain superfolds. Nature 372: 631634.
  • Ortega, S., Schaeffer, M.-T., Soderman, D., DiSalvo, J., Linemeyer, D.L., Gimenez-Gallego, G., and Thomas, K.A. 1991. Conversion of cysteine to serine residues alters the activity, stability, and heparin dependence of acidic fibroblast growth factor. J. Biol. Chem. 266: 58425846.
  • Otwinowski, Z. 1993. Oscillation data reduction program. In Proceedings of the CCP4 Study Weekend: “Data Collection and Processing.” SERC Daresbury Laboratory, Daresbury, England.
  • Otwinowski, Z. and Minor, W. 1997. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276: 307326.
  • Ponting, C.P. and Russell, R.B. 2000. Identification of distant homologues of fibroblast growth factors suggests a common ancestor for all beta-trefoil proteins. J. Mol. Biol. 302: 10411047.
  • Priestle, J.P., Schar, H.-P., and Grutter, M.G. 1989. Crystallographic refinement of interleukin 1β at 2.0 angstrom resolution. Proc. Natl. Acad. Sci. 86: 96679671.
  • Rutenber, E., Katzin, B.J., Ernst, S., Collins, E.J., Mlsna, D., Ready, M.P., and Robertus, J.D. 1991. Crystallographic refinement of ricin to 2.5Å. Proteins 10.
  • Sandberg, W.S. and Terwilliger, T.C. 1991. Energetics of repacking a protein interior. Proc. Natl. Acad. Sci. 88: 17061710.
  • Sanz, J.M. and Gimenez-Gallego, G. 1997. A partly folded state of acidic fibroblast growth factor at low pH. Eur. J. Biochem. 246: 328335.
  • Song, H.K. and Suh, S.W. 1998. Kunitz-type soybean trypsin inhibitor revisited: Refined structure of its complex with porcine trypsin reveals an insight into the interaction between a homologous inhibitor from Erythrina caffra and tissue-type plasminogen activator. J. Mol. Biol. 275: 347363.
  • Soyer, A., Chomilier, J., Mornon, J.P., Jullien, R., and Sadoc, J.F. 2000. Voronoi tessellation reveals the condensed matter character of folded proteins. Phys. Rev. Lett. 85: 35323535.
  • Sweet, R.M., Wright, H.T., Janin, J., Chothia, C.H., and Blow, D.M. 1974. Crystal structure of the complex of porcine trypsin with soybean trypsin inhibitor (Kunitz) at 2.6 angstrom resolution. Biochemistry 13: 42124228.
  • Tahirov, T.H., Lu, T.H., Liaw, Y.C., Chen, Y.L., and Lin, J.Y. 1995. Crystal structure of abrin-a at 2.14Å. J. Mol. Biol. 250: 354367.
  • Tanford, C. 1962. Contribution of hydrophobic interactions to the stability of the globular conformation of proteins. J. Am. Chem. Soc. 84: 42404247.
  • Tronrud, D.E. 1992. Conjugate-direction minimization: An improved method for the refinement of macromolecules. Acta Crystallogr. A48: 912916.
  • Tronrud, D.E. 1996. Knowledge-based B-factor restraints for the refinement of proteins. J. Appl. Cryst. 29: 100104.
  • Tronrud, D.E., Ten Eyck, L.F., and Matthews, B.W. 1987. An efficient general-purpose least-squares refinement program for macromolecular structures. Acta Crystallogr. A43: 489501.
  • Tsai, P.K., Volkin, D.B., Dabora, J.M., Thompson, K.C., Bruner, M.W., Gress, J.O., Matuszewska, B., Keogan, M., Bondi, J.V., and Middaugh, C.R. 1993. Formulation design of acidic fibroblast growth factor. Pharm. Res. 10: 649659.
  • Vallee, F., Kadziola, A., Bourne, Y., Juy, M., Rodenburg, K.W., Svensson, B., and Haser, R. 1998. Barley alpha-amylase bound to its endogenous protein inhibitor BASI: Crystal structure of the complex at 1.9Å resolution. Struct. 6: 649659.
  • Varley, P., Gronenborn, A.M., Christensen, H., Wingfield, P.T., Pain, R.H., and Clore, G.M. 1993. Kinetics of folding of the all-β sheet protein Interleukin-1β. Science 260: 11101113.
  • Walsh, S.T., Sukharev, V.I., Betz, S.F., Vekshin, N.L., and DeGrado, W.F. 2001. Hydrophobic core malleability of a de novo designed three-helix bundle protein. J. Mol. Biol. 305: 361373.
  • Yue, K. and Dill, K.A. 1995. Forces of tertiary structural organization in globular proteins. Proc. Natl. Acad. Sci. 92: 146150.
  • Zazo, M., Lozano, R.M., Ortega, S., Varela, J., Diaz-Orejas, R., Ramirez, J.M., and Gimenez-Gallego, G. 1992. High-level synthesis in Escherichia coli of a shortened and full-length human acidic fibroblast growth factor and purification in a form stable in aqueous solutions. Gene 113: 231238.
  • Zhang, X.-J. and Matthews, B.W. 1994. Enhancement of the method of molecular replacement by incorporation of known structural information. Acta Crystallogr. D50: 675686.
  • Zhu, X., Komiya, H., Chirino, A., Faham, S., Fox, G.M., Arakawa, T., Hsu, B.T., and Rees, D.C. 1991. Three-dimensional structures of acidic and basic fibroblast growth factors. Science 251: 9093.