• Biomagnification;
  • probabilistic risk assessment (PRA);
  • polychlorinated biphenyls;
  • dredged material;
  • trophic transfer;
  • uncertainty and variability

Biomagnification of organochlorine and other persistent organic contaminants by higher trophic level organisms represents one of the most significant sources of uncertainty and variability in evaluating potential risks associated with disposal of dredged materials. While it is important to distinguish between population variability (e.g., true population heterogeneity in fish weight, and lipid content) and uncertainty (e.g., measurement error), they can be operationally difficult to define separately in probabilistic estimates of human health and ecological risk. We propose a disaggregation of uncertain and variable parameters based on: (1) availability of supporting data; (2) the specific management and regulatory context (in this case, of the U.S. Army Corps of Engineers/U.S. Environmental Protection Agency tiered approach to dredged material management); and (3) professional judgment and experience in conducting probabilistic risk assessments. We describe and quantitatively evaluate several sources of uncertainty and variability in estimating risk to human health from trophic transfer of polychlorinated biphenyls (PCBs) using a case study of sediments obtained from the New York-New Jersey Harbor and being evaluated for disposal at an open water off-shore disposal site within the northeast region. The estimates of PCB concentrations in fish and dietary doses of PCBs to humans ingesting fish are expressed as distributions of values, of which the arithmetic mean or mode represents a particular fractile. The distribution of risk values is obtained using a food chain biomagnification model developed by Gobas(1,2) by specifying distributions for input parameters disaggregated to represent either uncertainty or variability. Only those sources of uncertainty that could be quantified were included in the analysis. Results for several different two-dimensional Latin Hypercube analyses are provided to evaluate the influence of the uncertain versus variable disaggregation of model parameters. The analysis suggests that variability in human exposure parameters is greater than the uncertainty bounds on any particular fractile, given the described assumptions.