Arginine methylation regulates antibody responses through modulating cell division and isotype switching in B cells



Junichiro Mizuguchi, Department of Immunology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan.

Tel: +81 3 3351 6141; fax: +81 3 3341 2941; e-mail:


Protein arginine methylation plays crucial roles, including signal transduction, transcriptional control, cell proliferation and/or differentiation. B cells undergo clonal division, isotype switching and differentiate into antibody forming cells following stimulation with Toll-like receptor-ligand, lipopolysaccharide (LPS) and T cell-derived signals, including CD40-ligand (CD40-L) and interleukin 4 (IL-4). Whether protein arginine methylation affects B cell division and/or isotype switching to IgG1 in response to LPS, IL-4, and CD40-L was examined using the arginine methyl transferase inhibitor adenosine-2′,3′-dialdehyde (AdOx). Addition of AdOx substantially reduced the number of division cycles of stimulated B cells, whereas cell viability remained intact. Upon stimulation with LPS/IL-4/CD40-L, the proportion of surface IgG1 positive cells in each division cycle was slightly diminished by AdOx. However, the degree of expression of γ1 germ line transcript and activation-induced cytidine deaminase (AID) in response to LPS/IL-4/CD40-L were unaffected by addition of AdOx, suggesting that AdOx influences class switch recombination independent of AID expression through transcriptional control. Taken together, arginine methylation appears to be involved in B cell isotype switching, as well as in clonal expansion of B cells in response to LPS/IL-4/CD40-L.