• 1
    Good M.F., Xu H., Wykes M., Engwerda C.R. (2005) Development and regulation of cell-mediated immune responses to the blood stages of malaria: implications for vaccine research. Annu Rev Immunol 23: 6999.
  • 2
    Steinman R.M., Banchereau J. (2007) Taking dendritic cells into medicine. Nature 449: 41926.
  • 3
    Shortman K., Naik S.H. (2007) Steady-state and inflammatory dendritic-cell development. Nat Rev Immunol 7: 1930.
  • 4
    Geissmann F., Manz M.G., Jung S., Sieweke M.H., Merad M., Ley K. (2010) Development of monocytes, macrophages, and dendritic cells. Science 327: 65661.
  • 5
    Dominguez P.M., Ardavin C. (2010) Differentiation and function of mouse monocyte-derived dendritic cells in steady state and inflammation. Immunol Rev 234: 90104.
  • 6
    Serbina N.V., Salazar-Mather T.P., Biron C.A., Kuziel W.A., Pamer E.G. (2003) TNF/iNOS-producing dendritic cells mediate innate immune defense against bacterial infection. Immunity 19: 5970.
  • 7
    Wakkach A., Fournier N., Brun V., Breittmayer J.P., Cottrez F., Groux H. (2003) Characterization of dendritic cells that induce tolerance and Tr 1 cell differentiation in vivo. Immunity 18: 60517.
  • 8
    Wykes M.N., Good M.F. (2008) What really happens to dendritic cells during malaria? Nat Rev Microbiol 6: 86470.
  • 9
    Urban B.C., Ferguson D.J., Pain A., Willcox N., Plebanski M., Austyn J.M., Roberts D.J. (1999) Plasmodium falciparum-infected erythrocytes modulate the maturation of dendritic cells. Nature 400: 737.
  • 10
    Ocana-Morgner C., Mota M.M., Rodriguez A. (2003) Malaria blood stage suppression of liver stage immunity by dendritic cells. J Exp Med 197: 14351.
  • 11
    Perry J.A., Olver C.S., Burnett R.C., Avery A.C. (2005) Cutting edge: the acquisition of TLR tolerance during malaria infection impacts T cell activation. J Immunol 174: 59215.
  • 12
    Wilson N.S., Behrens G.M., Lundie R.J., Smith C.M., Waithman J., Young L., Forehan S.P., Mount A., Steptoe R.J., Shortman K.D., De Koning-Ward T.F., Belz G.T., Carbone F.R., Crabb B.S., Heath W.R., Villadangos J.A. (2006) Systemic activation of dendritic cells by toll-like receptor ligands or malaria infection impairs cross-presentation and antiviral immunity. Nat Immunol 7: 16572.
  • 13
    Wong K.A., Rodriguez A. (2008) Plasmodium infection and endotoxic shock induce the expansion of regulatory dendritic cells. J Immunol 180: 71626.
  • 14
    Sponaas A.M., Cadman E.T., Voisine C., Harrison V., Boonstra A., O'Garra A., Langhorne J. (2006) Malaria infection changes the ability of splenic dendritic cell populations to stimulate antigen-specific T cells. J Exp Med 203: 142733.
  • 15
    Engwerda C.R., Beattie L., Amante F.H. (2005) The importance of the spleen in malaria. Trends Parasitol 21: 7580.
  • 16
    Kumar S., Good M.F., Dontfraid F., Vinetz J.M., Miller L.H. (1989) Interdependence of CD4+ T cells and malarial spleen in immunity to Plasmodium vinckei vinckei. Relevance to vaccine development. J Immunol 143: 201723.
  • 17
    Achtman A.H., Khan M., Maclennan I.C., Langhorne J. (2003) Plasmodium chabaudi chabaudi infection in mice induces strong B cell responses and striking but temporary changes in splenic cell distribution. J Immunol 171: 31724.
  • 18
    Beattie L., Engwerda C.R., Wykes M., Good M.F. (2006) CD8+ T lymphocyte-mediated loss of marginal metallophilic macrophages following infection with Plasmodium chabaudi chabaudi AS. J Immunol 177: 251826.
  • 19
    Shinkai Y., Rathbun G., Lam K.P., Oltz E.M., Stewart V., Mendelsohn M., Charron J., Datta M., Young F., Stall A.M., Alt F.W. (1992) RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell 68: 85567.
  • 20
    Barnden M.J., Allison J., Heath W.R., Carbone F.R. (1998) Defective TCR expression in transgenic mice constructed using cDNA-based α- and β-chain genes under the control of heterologous regulatory elements. Immunol Cell Biol 76: 3440.
  • 21
    Ing R., Segura M., Thawani N., Tam M., Stevenson M.M. (2006) Interaction of mouse dendritic cells and malaria-infected erythrocytes: uptake, maturation, and antigen presentation. J Immunol 176: 44150.
  • 22
    Miyakoda M., Kimura D., Yuda M., Chinzei Y., Shibata Y., Honma K., Yui K. (2008) Malaria-specific and nonspecific activation of CD8+ T Cells during blood stage of Plasmodium berghei infection. J Immunol 181: 14208.
  • 23
    Chan C.W., Crafton E., Fan H.N., Flook J., Yoshimura K., Skarica M., Brockstedt D., Dubensky T.W., Stins M.F., Lanier L.L., Pardoll D.M., Housseau F. (2006) Interferon-producing killer dendritic cells provide a link between innate and adaptive immunity. Nat Med 12: 20713.
  • 24
    Goldrath A.W., Bogatzki L.Y., Bevan M.J. (2000) Naive T cells transiently acquire a memory-like phenotype during homeostasis-driven proliferation. J Exp Med 192: 55764.
  • 25
    Sponaas A.M., Freitas Do Rosario A.P., Voisine C., Mastelic B., Thompson J., Koernig S., Jarra W., Renia L., Mauduit M., Potocnik A.J., Langhorne J. (2009) Migrating monocytes recruited to the spleen play an important role in control of blood stage malaria. Blood 114: 552231.
  • 26
    Krug A., French A.R., Barchet W., Fischer J.A., Dzionek A., Pingel J.T., Orihuela M.M., Akira S., Yokoyama W.M., Colonna M. (2004) TLR9-dependent recognition of MCMV by IPC and DC generates coordinated cytokine responses that activate antiviral NK cell function. Immunity 21: 10719.
  • 27
    Blasius A.L., Giurisato E., Cella M., Schreiber R.D., Shaw A.S., Colonna M. (2006) Bone marrow stromal cell antigen 2 is a specific marker of type I IFN-producing cells in the naive mouse, but a promiscuous cell surface antigen following IFN stimulation. J Immunol 177: 32605.
  • 28
    Vinay D.S., Kim C.H., Chang K.H., Kwon B.S. (2010) PDCA expression by B lymphocytes reveals important functional attributes. J Immunol 184: 80715.
  • 29
    Bao Y., Han Y., Chen Z., Xu S., Cao, X. (2010) IFN-α-producing PDCA-1+ Siglec-H B cells mediate innate immune defense by activating NK cells. Eur J Immunol 41: 65768.