• 1
    MacLennan J.D. (1962) The histotoxic clostridial infections of man. Bacteriol Rev 26: 177276.
  • 2
    McDonel J.L. (1986) Toxins of Clostridium perfringens types A, B, C, D, and E. In: Dorner F., Drews J., eds. Pharmacology of Bacterial Toxins. Oxford, England, Pergamon Press, pp. 477517.
  • 3
    Bryant A.E., Chen R.Y.Z., Nagata Y., Wang Y, Lee C.H, Finegold S., Guth P.H., Stevens D.L. (2000) Clostridial gas gangrene. I. Cellular and molecular mechanisms of microvascular dysfunction induced by exotoxins of Clostvidium perfringens. J Infect Dis 182: 799807.
  • 4
    Bryant A.E., Stevens D.L. (2010) Clostridial myonecrosis: new insights in pathogenesis and management. Curr Infect Dis Rep 12: 38391.
  • 5
    Willis T.A. (1979) Anaerobic Bacteriology. Clinical and Laboratory Practice. London: Butterworth.
  • 6
    Titball R.W. (1993) Bacterial phospholipases C. Microbiol Rev 57: 34766.
  • 7
    Sakurai J., Nagahama M., Oda M. (2004) Clostridium perfringens alpha-toxin: characterization and mode of action. J Biochem (Tokyo) 136: 56974.
  • 8
    Popoff M.R., Bouvet P. (2009) Clostridial toxins. Future Microbiol 4: 102164.
  • 9
    Naylor C.E., Eaton J.T., Howells A., Justin N., Moss D.S., Titball R.W., Basak A.K. (1998) Structure of the key toxin in gas gangrene. Nat Struct Biol 5: 73846.
  • 10
    Hough E., Hansen L.K., Birknes B., Jynge K., Hansen S., Hordvik A., Little C., Dodson E., Derewenda Z. (1989) High-resolution (1.5 A) crystal structure of phospholipase C from Bacillus cereus. Nature 338: 35760.
  • 11
    Naylor C.E., Jepson M., Crane D.T., Titball R.W., Miller J., Basak A.K., Bolgiano B. (1999) Characterization of the calcium-binding C-terminal domain of Clostridium perfringens alpha-toxin. J Mol Biol 294: 75770.
  • 12
    Nagahama M., Okagawa Y., Nakayama T., Nishioka E., Sakurai J. (1995) Site-directed mutagenesis of histidine residues in Clostridium perfringens alpha toxin. J Bacteriol 177: 117985.
  • 13
    Nagahama M., Nakayama T., Michiue K., Sakurai J. (1997) Site-specific mutagenesis of Clostridium perfringens alpha-toxin: replacement of Asp-56, Asp-130, or Glu-152 causes loss of enzymatic and hemolytic activities. Infect Immun 65: 348992.
  • 14
    Nagahama M., Otsuka A., Sakurai J. (2006) Role of tyrosine-57 and -65 in membrane-damaging and sphingomyelinase activities of Clostridium perfringens alpha-toxin. Biochim Biophys Acta 1762: 11014.
  • 15
    Jepson M., Howells A., Bullifent H.L., Bolgiano B., Crane D., Miller J., Holley J., Jayasekera P., Titball R.W. (1999) Differences in the carboxy-terminal (putative phospholipid binding) domains of Clostridium perfringens and Clostridium bifermentans phospholipases C influence the hemolytic and lethal properties of these enzymes. Infect Immun 67: 3297301.
  • 16
    Nagahama M., Mukai M., Morimitsu S., Ochi S., Sakurai J. (2002) Role of the C-domain in the biological activities of Clostridium perfringens alpha-toxin. Microbiol Immunol 46: 64755.
  • 17
    Williamson E.D., Titball R.W. (1993) A genetically engineered vaccine against the alpha-toxin of Clostridium perfringens protects mice against experimental gas gangrene. Vaccine 11: 12538.
  • 18
    Neeson B.N., Clark G.C., Atkins H.S., Lingard B., Titball R.W. (2007) Analysis of protection afforded by a Clostridium perfringens α-toxoid against heterologous clostridial phospholipases C. Microb Pathog 43: 16165.
  • 19
    Nagahama M., Kobayashi K., Ochi S., Sakurai J. (1991) Enzyme-linked immunosorbent assay for rapid detection of toxins from Clostridium perfringens. FEMS Microbiol Lett 68: 414.