SEARCH

SEARCH BY CITATION

REFERENCES

  • 1
    Samuel C.E. (2001). Antiviral Actions of Interferons. Clin Microbiol Rev 14: 778809.
  • 2
    Langland J.O., Cameron J.M., Heck M.C., Jancovich J.K., Jacobs B.L. (2006). Inhibition of PKR by RNA and DNA viruses. Virus Res 19: 10010.
  • 3
    Su Y.H., Oakes J.E., Lausch R.N. (1990). Ocular avirulence of a herpes simplex virus type 1 strain is associated with heightened sensitivity to α/β interferon. J Virol 64: 218792.
  • 4
    Lin R., Noyce R.S., Collins S.E., Everett R.D., Mossman K.L. (2004). The herpes simplex virus ICP0 RING finger domain inhibits IRF3- and IRF7-mediated activation of interferon-stimulated genes. J Virol 78: 167584.
  • 5
    Melroe G.T., DeLuca N.A., Knipe D.M. (2004). Herpes simplex virus 1 has multiple mechanisms for blocking virus-induced interferon production. J Virol 78: 841120.
  • 6
    Mossman K.L., Smiley J.R. (2002). Herpes simplex virus ICP0 and ICP34.5 counteract distinct interferon-induced barriers to virus replication. J Virol 76: 19958.
  • 7
    Mossman K.L., Saffran H.A., Smiley J.R. (2000). Herpes simplex virus ICP0 mutants are hypersensitive to interferon. J Virol 74: 20526.
  • 8
    Cheng G., Brett M.E., He B. (2001). Val193 and Phe195 of the γ134.5 protein of herpes simplex virus 1 are required for viral resistance to interferon-α/β. Virology 290: 11520.
  • 9
    Chou J., Roizman B. (1992). The γ134.5 gene of herpes simplex virus 1 precludes neuroblastoma cells from triggering total shutoff of protein synthesis characteristic of programmed cell death in neuronal cells. Proc Natl Acad Sci USA 89: 326670.
  • 10
    He B., Gross M., Roizman B. (1998). The γ134.5 protein of herpes simplex virus 1 has the structural and functional attributes of a protein phosphatase 1 regulatory subunit and is present in a high molecular weight complex with the enzyme in infected cells. J Biol Chem 273: 20,73743.
  • 11
    He B., Gross M., Roizman B. (1997). The γ134.5 protein of herpes simplex virus 1 complexes with protein phosphatase 1α to dephosphorylate the α subunit of the eukaryotic translation initiation factor 2 and preclude the shutoff of protein synthesis by double-stranded RNA-activated protein kinase. Proc Natl Acad Sci USA 94: 8438.
  • 12
    He B., Chou J., Brandimarti R., Mohr I., Gluzman Y., Roizman B. (1997). Suppression of the phenotype of γ134.5 herpes simplex virus 1: failure of activated RNA-dependent protein kinase to shut off protein synthesis is associated with a deletion in the domain of the α47 gene. J Virol 71: 604954.
  • 13
    Smith K.D., Mezhir J.J., Bickenbach K., Veerapong J., Charron J., Posner M.C., Roizman B., Weichselbaum R.R. (2006). Activated MEK suppresses activation of PKR and enables efficient replication and in vivo oncolysis by γ134.5 mutants of herpes simplex virus 1. J Virol 80: 111020.
  • 14
    Ward S.L., Scheuner D., Poppers J., Kaufman R.J., Mohr I., Leib D.A. (2003). In vivo replication of an ICP34.5 second-site suppressor mutant following corneal infection correlates with in vitro regulation of eIF2α phosphorylation. J Virol 77: 462634.
  • 15
    Orzalli M.H., Deluca N.A., Knipe D.M. (2012). Nuclear IFI16 induction of IRF-3 signaling during herpesviral infection and degradation of IFI16 by the viral ICP0 protein. Proc Natl Acad Sci U S A 109: E3008E3017.
  • 16
    Cuchet-Lourenço D., Vanni E., Glass M., Orr, A., Everett R.D. (2012). Herpes simplex virus 1 ubiquitin ligase ICP0 interacts with PML isoform I and induces its SUMO-independent degradation. J Virol 86: 11,20922.
  • 17
    Boutell C., Everett R.D. (2013). Regulation of alpha herpesvirus infections by the ICP0 family proteins. J Gen Virol 94: 46581.
  • 18
    Cassady K.A., Gross M. (2002). The herpes simplex virus type 1 Us11 protein interacts with protein kinase R in infected cells and requires a 30-amino-acid sequence adjacent to a kinase substrate domain. J Virol 76: 202935.
  • 19
    Cassady K.A., Gross M, Roizman B. (1998). The herpes simplex virus Us11 protein effectively compensates for the γ134.5 gene if present before activation of protein kinase R by precluding its phosphorylation and that of the αsubunit of eukaryotic translation initiation factor 2. J Virol 72: 86206.
  • 20
    Khoo D., Perez C., Mohr I. (2002). Characterization of RNA determinants recognized by the arginine- and proline-rich region of Us11, a herpes simplex virus type 1-encoded double-stranded RNA binding protein that prevents PKR activation. J Virol 76: 11,97181.
  • 21
    Mohr I., Gluzman Y. (1996). A herpesvirus genetic element which affects translation in the absence of the viral GADD34 function. EMBO J 15: 475966.
  • 22
    Mulvey M., Poppers J., Sternberg D., Mohr I. (2003). Regulation of eIF2α phosphorylation by different functions that act during discrete phases in the herpes simplex virus type 1 life cycle. J Virol 77: 10,91728.
  • 23
    Peters G.A., Khoo D., Mohr I., Sen G.C. (2002). Inhibition of PACT-mediated activation of PKR by the herpes simplex virus type 1 Us11 protein. J Virol 76: 11,05464.
  • 24
    Poppers J., Mulvey M., Perez C., Khoo D., Mohr I. (2003). Identification of a lytic Epstein–Barr virus gene product that can regulate PKR activation. J Virol 77: 22836.
  • 25
    Sànchez R., Mohr I. (2007). Inhibition of cellular 2′–5′ oligoadenylate synthetase by the herpes simplex virus type 1 Us11 protein. J Virol 81: 34556.
  • 26
    Christophers J., Clayton J., Craske J., Ward R., Collins P., Trowbridge M., Darby G. (1998). Survey of resistance of herpes simplex virus to acyclovir in northwest England. Antimicrob Agents Chemother 42: 86872.
  • 27
    Collins P., Ellis M.N. (1993). Sensitivity monitoring of clinical isolates of herpes simplex virus to acyclovir. J Med Virol Suppl 1: 5866.
  • 28
    Hill E.L., Hunter G.A., Ellis M.N. (1991). In vitro and in vivo characterization of herpes simplex virus clinical isolates recovered from patients infected with human immunodeficiency virus. Antimicrob Agents Chemother 35: 232228.
  • 29
    Nugier F., Colin J.N., Aymard M., Langlois M. (1992). Occurrence and characterization of acyclovir-resistant herpes simplex virus isolates: Report on a two-year sensitivity screening survey. J Med Virol 36: 112.
  • 30
    Pottage J.C., Jr., Kessler H.A. (1995). Herpes simplex virus resistance to acyclovir: Clinical relevance. Infect Agents Dis 4: 11524.
  • 31
    Leib D.A., Harrison T.E., Laslo K.M., Machalek M.A., Moorman N.J., Virgin H.W. (1999). Interferons regulate the phenotype of wild-type and mutant herpes simplex viruses in vivo. J Exp Med 189: 66372.
  • 32
    Saijo M., Suzutani T., Itoh K., Hirano Y., Murono K., Nagamine M., Mizuta K., Niikura M., Morikawa S. (1999). Nucleotide sequence of thymidine kinase gene of sequential acyclovir-resistant herpes simplex virus type 1 isolates recovered from a child with Wiskott-Aldrich syndrome: evidence for reactivation of acyclovir-resistant herpes simplex virus. J Med Virol 58: 38793.
  • 33
    Suzutani T., Saijo M., Nagamine M., Ogasawara M., Azuma M. (2000). Rapid phenotypic characterization method for herpes simplex virus and varicella-zoster virus thymidine kinase to screen for acyclovir-resistant viral infection. J Clinic Microbiol 38: 183944.
  • 34
    Suzutani T., Koyano S., Takada M., Yoshida I., Azuma M. (1995). Analysis of the relationship between cellular thymidine kinase activity and virulence of thymidine kinase-negative herpes simplex virus types 1 and 2. Microbiol Immunol 39: 78794.
  • 35
    Suzutani T., Machida H., Sakuma T., Azuma M. (1988). Effects of various nucleosides on antiviral activity and metabolism of 1-β-D-arabinofranosyl-E (2-bromovinyl) uracil against herpes simplex virus type 1 and 2. Antimicrob Agents Chemother 32: 154751.
  • 36
    Kaneko H., Iida T., Aoki K., Ohno S., Suzutani T. (2005). Sensitive and rapid detection of herpes simplex virus and varicella-zoster virus DNA by loop-mediated isothermal amplification. J Clin Microbiol 43: 32906.
  • 37
    Saijo M., Suzutani T., Mizuta K., Kurane I., Morikawa S. (2008). Characterization and susceptibility to antiviral agents of herpes simplex virus type 1 containing a unique thymidine kinase gene with an amber codon between the first and the second initiation codons. Arch Virol 2: 30314.
  • 38
    Johnson P.A., MacLean C., Marsden H.S., Dalziel R.G., Everett R.D. (1986). The product of gene Us11 of herpes simplex virus type 1 is expressed as a true late gene. J Gen Virol 67: 87183.
  • 39
    Halford W.P., Weisend C., Grace J., Soboleski M., Carr D.J., Balliet J.W., Imai Y., Margolis T.P, Gebhardt B.M. (2006). ICP0 antagonizes Stat 1-dependent repression of herpes simplex virus: implications for the regulation of viral latency. Virol J 3: 44.
  • 40
    Harle P., Sainz B., Jr., Carr D.J., Halford W.P. (2002). The immediate-early protein, ICP0, is essential for the resistance of herpes simplex virus to interferon-alpha/beta. Virology 293: 295304.
  • 41
    Levin M.J., Leary P.L. (1981). Inhibition of human herpesviruses by combination of acyclovir and human leukocyte interferon. Infect Immun 32: 9959.
  • 42
    Hammer S.M., Kaplan J.C., Lowe B.R., Hirsch M.S. (1982). Alpha interferon and acyclovir treatment of herpes simplex virus in lymphoid cell cultures. Antimicrob Agents Chemother 21: 63440.
  • 43
    Stanwick T.L., Schinazi R.F., Campbell D.E., Nahmias A.J. 1981. Combined antiviral effect of interferon and acyclovir on herpes simplex virus types 1 and 2. Antimicrob Agents Chemother 19: 6724.
  • 44
    Yokota S., Yokoyama N., Kubota T., Suzutani T., Yoshida I., Miura S., Jinbow K., Fujii N. (2001). Herpes simplex virus type 1 suppresses the interferon signaling pathway by inhibiting phosphorylation of STATs and Janus kinase during an early infection stage. Virology 286: 11924.
  • 45
    Chou J., Chen J.J., Gross M., Roizman B. (1995). Association of a Mr 90,000 phosphoprotein with protein kinase PKR in cells exhibiting enhanced phosphorylation of translation initiation factor eIF2α and premature shutoff of protein synthesis after infection with γ134.5 mutants of herpes simplex virus 1. Proc Natl Acad Sci USA 92: 10,51620.
  • 46
    Poon A.P., Roizman B. (1997). Differentiation of the shutoff of protein synthesis by virion host shutoff and mutant γ134.5 genes of herpes simplex virus 1. Virology 229: 98105.
  • 47
    Poppers J., Mulvey M., Khoo D., Mohr I. (2000). Inhibition of PKR activation by the proline-rich RNA binding domain of the herpes simplex virus type 1 Us11 protein. J Virol 74: 11,21521.
  • 48
    Mulvey M., Camarena V., Mohr I. (2004). Full resistance of herpes simplex virus Type 1-infected primary human cells to alpha interferon requires both the Us11 and γ134.5 gene products. J Virol 78: 10,1936.
  • 49
    Chee A.V., Lopez P., Pandolfi P.P., Roizman B. (2003). Promyelocytic leukemia protein mediates interferon-based anti-herpes simplex virus 1 effects. J Virol 77: 71015.
  • 50
    Everett R.D., Rechter S., Papior P., Tavalai N., Stamminger T., Orr A. (2006). PML contributes to a cellular mechanism of repression of herpes simplex virus type 1 infection that is inactivated by ICP0. J Virol 80: 79958005.
  • 51
    Everett R.D., Parada C., Gripon P., Sirma H., Orr A. (2008). Replication of ICP0-null mutant herpes simplex virus type 1 is restricted by both PML and Sp100. J Virol 82: 266172.
  • 52
    Sanfilippo C.M., Blaho J.A. (2006). ICP0 gene expression is a herpes simplex virus type 1 apoptotic trigger. J Virol 80: 681021.
  • 53
    Field H.J., Wildy P. (1978). The pathogenicity of thymidine kinase-deficient mutants of herpes simplex virus in mice. J Hyg Camb 81: 26777.
  • 54
    Jamieson A.T., Gentry G.A., Subak-Sharpe J.H. (1974). Induction of both thymidine and deoxycytidine kinase activity by herpes viruses. J Gen Virol 24: 46580.
  • 55
    Orlando J.S., Balliet J.W., Kushnir A.S., Astor T.L., Kosz-Vnenchak M., Rice S.A., Knipe D.M., Schaffer P.A. (2006). ICP22 is required for wild-type composition and infectivity of herpes simplex virus type 1 virions. J Virol 80: 938190.
  • 56
    Newcomb W.W., Trus B.L., Booy F.P., Steven A.C., Wall J.S., Brown J.C. (1993). Structure of the herpes simplex virus capsid. Molecular composition of the pentons and the triplexes. J Mol Biol 232: 499511.
  • 57
    Trus B.L., Newcomb W.W., Booy F.P., Brown J.C., Steven A.C. (1992). Distinct monoclonal antibodies separately label the hexons or the pentons of herpes simplex virus capsid. Proc Natl Acad Sci USA 89: 1150811512.