• brain;
  • innate immunity;
  • nucleoprotein;
  • rabies virus


By using a cultured neuroblastoma cell line, the present authors recently showed that the N protein of virulent rabies virus fixed strain Nishigahara (Ni), but not that of the attenuated derivative Ni-CE, mediates evasion of induction of type I interferon (IFN). In this study, to determine whether Ni N protein indeed fulfills this function in vivo, the abilities to suppress IFN responses in the mouse brain of Ni-CE and the virulent chimeric virus CE(NiN), which has the N gene from Ni in the genetic background of Ni-CE, were compared. It was demonstrated that CE(NiN) propagates and spreads more efficiently than does Ni-CE in the brain and that IFN response in brains infected with CE(NiN) is weaker than in those infected with Ni-CE. It was also shown that amino acids at positions 273 and 394 in the N protein, which are known as pathogenic determinants, affect the ability of the viruses to suppress IFN response in the brain. These findings strongly suggest that, in the brain, rabies virus N protein plays important roles in evasion of innate immune responses and thereby in efficient propagation and spread of virus leading to lethal outcomes of infection.