• 1
    Wiersinga W.J., Van der poll T., White N.J., Day N.P., Peacock S.J. (2006) Melioidosis: insights into the pathogenicity of Burkholderia pseudomallei. Nat Rev Micro 4: 27282.
  • 2
    Cheng A.C., Currie B.J. (2005) Melioidosis: epidemiology, pathophysiology, and management. Clin Microbiol Rev 18: 383416.
  • 3
    Harley V.S., Dance D.A., Drasar B.S., Tovey G. (1998) Effects of Burkholderia pseudomallei and other Burkholderia species on eukaryotic cells in tissue culture. Microbios 96: 7193.
  • 4
    Yesilkaya H., Kadioglu A., Gingles N., Alexander J.E., Mitchell T.J., Andrew P.W. (2000) Role of manganese-containing superoxide dismutase in oxidative stress and virulence of Streptococcus pneumoniae. Infect Immun 68: 281926.
  • 5
    Franzon V.L., Arondel J., Sansonetti P.J. (1990) Contribution of superoxide dismutase and catalase activities to Shigella flexneri pathogenesis. Infect Immun 58: 52935.
  • 6
    Jangiam W., Loprasert S., Smith D.R., Tungpradabkul S. (2010) Burkholderia pseudomallei RpoS regulates OxyR and the katG-dpsA operon under conditions of oxidative stress. Microbiol Immunol 54: 38997.
  • 7
    Lushchak V.I. (2001) Oxidative stress and mechanisms of protection against it in bacteria. Biochem Mosc 66: 47689.
  • 8
    Holden M.T.G., Titball R.W., Peacock S.J., Cerdeño-Tárraga A.M., Atkins T., Crossman L.C., Pitt T., Churcher C., Mungall K., Bentley S.D., Sebaihia M., Thomson N.R., Bason N., Beacham I.R., Brooks K., Brown K.A., Brown N.F., Challis G.L., Cherevach I., Chillingworth T., Cronin A., Crossett B., Davis P., DeShazer D., Feltwell T., Fraser A., Hance Z., Hauser H., Holroyd S., Jagels K., Keith K.E., Maddison M., Moule S., Price C., Quail M.A., Rabbinowitsch E., Rutherford K., Sanders M., Simmonds M., Songsivilai S., Stevens K., Tumapa S., Vesaratchavest M., Whitehead S., Yeats C., Barrell B.G., Oyston P.C.F., Parkhill J. (2004) Genomic plasticity of the causative agent of melioidosis, Burkholderia pseudomallei. Proc Natl Acad Sci USA 101: 14,2405.
  • 9
    Wongtrakoongate P., Roytrakul S., Yasothornsrikul S., Tungpradabkul S. (2011) A proteome reference map of the causative agent of melioidosis Burkholderia pseudomallei. J Biomed Biotechnol 2011: 53092630.
  • 10
    Osiriphun Y., Wongtrakoongate P., Sanongkiet S., Suriyaphol P., Thongboonkerd V., Tungpradabkul S. (2009) Identification and characterization of RpoS regulon and RpoS-dependent promoters in Burkholderia pseudomallei. J Proteome Res 8: 311831.
  • 11
    Jacob F., Monod J. (1961) Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol 3: 31856.
  • 12
    Demerec M., Hartman P.E. (1959) Complex loci in microorganisms. Annu Rev Microbiol 13: 377406.
  • 13
    Utaisincharoen P., Tangthawornchaikul N., Kespichayawattana W., Chaisuriya P., Sirisinha S. (2001) Burkholderia pseudomallei interferes with inducible nitric oxide synthase (iNOS) production: a possible mechanism of evading macrophage killing. Microbiol Immunol 45: 30713.
  • 14
    Subsin B., Thomas M.S., Katzenmeier G., Shaw J.G., Tungpradabkul S., Kunakorn M. (2003) Role of the stationary growth phase sigma factor RpoS of Burkholderia pseudomallei in response to physiological stress conditions. J Bacteriol 185: 700814.
  • 15
    Wongtrakoongate P., Mongkoldhumrongkul N., Chaijan S., Kamchonwongpaisan S., Tungpradabkul S. (2007) Comparative proteomic profiles and the potential markers between Burkholderia pseudomallei and Burkholderia thailandensis. Mol Cell Probes 21: 8191.
  • 16
    Lim H., Eng J., Yates J.R., III, Tollaksen S.L., Giometti C.S., Holden J.F., Adams M.W.W., Reich C.I., Olsen G.J., Hays L.G. (2003) Identification of 2D-gel proteins: a comparison of MALDI/TOF peptide mass mapping to mu LC-ESI tandem mass spectrometry. J Am Soc Mass Spectrom 14: 95770.
  • 17
    Mao F., Dam P., Chou J., Olman V., Xu Y. (2009) DOOR: a database for prokaryotic operons. Nucleic Acids Res 37: D45963.
  • 18
    Rodrigues F., Sarkar-Tyson M., Harding S.V., Sim S.H., Chua H.H., Lin C.H., Han X., Karuturi R.K.M., Sung K., Yu K., Chen W., Atkins T.P., Titball R.W., Tan P. (2006) Global map of growth-regulated gene expression in Burkholderia pseudomallei, the causative agent of melioidosis. J Bacteriol 188: 817888.
  • 19
    Lee B.N., Kroken S., Chou D.Y.T., Robbertse B., Yoder O.C., Turgeon B.G. (2005) Functional analysis of all nonribosomal peptide synthetases in Cochliobolus heterostrophus reveals a factor, NPS6, involved in virulence and resistance to oxidative stress. Eukaryot Cell 4: 54555.
  • 20
    Jeanjean R., Talla E., Latifi A., Havaux M., Janicki A., Zhang C.C. (2008) A large gene cluster encoding peptide synthetases and polyketide synthases is involved in production of siderophores and oxidative stress response in the cyanobacterium Anabaena sp. strain PCC 7120. Environ Microbiol 10: 257485.
  • 21
    Lithgow J.K., Hayhurst E.J., Cohen G., Aharonowitz Y., Foster S.J. (2004) Role of a cysteine synthase in Staphylococcus aureus. J Bacteriol 186: 157990.
  • 22
    Turnbull A.L., Surette M.G. (2010) Cysteine biosynthesis, oxidative stress and antibiotic resistance in Salmonella typhimurium. Res Microbiol 161: 64350.
  • 23
    Veal E.A., Toone W.M., Jones N., Morgan B.A. (2002) Distinct roles for glutathione S-transferases in the oxidative stress response in Schizosaccharomyces pombe. J Biol Chem 277: 35,52331.
  • 24
    Lovell M.A., Xiong S., Kindy M.S., Guo J., Xie J., Amaranth V., Montine T.J., Markesbery W.R. (2001) Expression of glutathione-S-transferase isozyme in the SY5Y neuroblastoma cell line increases resistance to oxidative stress. Free Radic Biol Med 31: 7381.
  • 25
    Leiers B., Kampkötter A., Grevelding C.G., Link C.D., Johnson T.E., Henkle-Dührsen K. (2003) A stress-responsive glutathione S-transferase confers resistance to oxidative stress in Caenorhabditis elegans. Free Radic Biol Med 34: 140515.
  • 26
    Siegele D.A. (2005) Universal stress proteins in Escherichia coli. J Bacteriol 187: 62534.
  • 27
    Gustavsson N., Diez A., Nyström T. (2002) The universal stress protein paralogues of Escherichia coli are co-ordinately regulated and co-operate in the defence against DNA damage. Mol Microbiol 43: 10717.
  • 28
    Cruz-Migoni A., Hautbergue G.M., Artymiuk P.J., Baker P.J., Bokori-Brown M., Chang C.T., Dickman M.J., Essex-Lopresti A., Harding S.V., Mahadi N.M., Marshall L.E., Mobbs G.W., Mohamed R., Nathan S., Ngugi S.A., Ong C., Ooi W.F., Partridge L.J., Phillips H.L., Raih M.F., Ruzheinikov S., Sarkar-Tyson M., Sedelnikova S.E., Smither S.J., Tan P., Titball R.W., Wilson S.A., Rice D.W. (2011) A Burkholderia pseudomallei toxin inhibits helicase activity of translation factor eIF4A. Science 334: 8214.
  • 29
    Slyshenkov V.S., Piwocka K., Sikora E., Wojtczak L. (2001) Pantothenic acid protects jurkat cells against ultraviolet light-induced apoptosis. Free Radic Biol Med 30: 130310.
  • 30
    Slyshenkov V., Shevalye A., Moiseenok A. (2007) Pantothenate prevents disturbances in the synaptosomal glutathione system and functional state of synaptosomal membrane under oxidative stress conditions. Neurochem J 1: 2359.
  • 31
    Wojtczak L., Slyshenkov V.S. (2003) Protection by pantothenic acid against apoptosis and cell damage by oxygen free radicals: the role of glutathione. BioFactors 17: 6173.
  • 32
    Mukherjee T., Hanes J., Tews I., Ealick S.E., Begley T.P. (2011) Pyridoxal phosphate: biosynthesis and catabolism. Biochim Biophys Acta 1814: 158596.
  • 33
    Chumnantana R., Hirose K., Baba H., Yagi T. (2001) Production of pyridoxal phosphate by a mutant strain of Schizosaccharomyces pombe. Biosci Biotechnol Biochem 65: 178995.
  • 34
    Jain S.K., Lim G. (2001) Pyridoxine and pyridoxamine inhibits superoxide radicals and prevents lipid peroxidation, protein glycosylation, and (Na++ K+)-ATPase activity reduction in high glucose-treated human erythrocytes. Free Radic Biol Med 30: 2327.
  • 35
    Dam P., Olman V., Harris K., Su Z., Xu Y. (2007) Operon prediction using both genome-specific and general genomic information. Nucleic Acids Res 35: 28898.
  • 36
    Brouwer R.W.W., Kuipers O.P., Hijum S.A.F.T.V. (2008) The relative value of operon predictions. Brief Bioinform 9: 36775.
  • 37
    Cabiscol E., Tamarit J., Ros J. (2010) Oxidative stress in bacteria and protein damage by reactive oxygen species. Int Microbiol 3: 38.
  • 38
    Imlay J.A. (2008) Cellular defenses against superoxide and hydrogen peroxide. Annu Rev Biochem 77: 75576.
  • 39
    Demple B. (1991) Regulation of bacterial oxidative stress genes. Annu Rev Genet 25: 31537.
  • 40
    Egan A.M., Gordon D.L. (1996) Burkholderia pseudomallei activates complement and is ingested but not killed by polymorphonuclear leukocytes. Infect Immun 64: 49529.
  • 41
    Ochsner U.A., Vasil M.L., Alsabbagh E., Parvatiyar K., Hassett D.J. (2000) Role of the Pseudomonas aeruginosa oxyR-recG operon in oxidative stress defense and DNA repair: OxyR-dependent regulation of katB-ankB, ahpB, and ahpC-ahpF. J Bacteriol 182: 453344.
  • 42
    Chander M., Demple B. (2004) Functional analysis of SoxR residues affecting transduction of oxidative stress signals into gene expression. J Biol Chem 279: 41,60310.
  • 43
    Zheng M., Wang X., Templeton L.J., Smulski D.R., Larossa R.A., Storz G. (2001) DNA microarray-mediated transcriptional profiling of the Escherichia coli response to hydrogen peroxide. J Bacteriol 183: 456270.
  • 44
    Corthésy-Theulaz I.E., Bergonzelli G.E., Henry H., Bachmann D., Schorderet D.F., Blum A.L., Ornston L.N. (1997) Cloning and characterization of Helicobacter pylori succinyl CoA:acetoacetate CoA-transferase, a novel prokaryotic member of the CoA-transferase family. J Biol Chem 272: 2565967.
  • 45
    Gottschalk G. (1986) Bacterial Metabolism. New York: Springer.
  • 46
    White H., Jencks W.P. (1976) Properties of succinyl-CoA:3-ketoacid coenzyme A transferase. J Biol Chem 251: 170811.
  • 47
    Liu Y., Fiskum G., Schubert D. (2002) Generation of reactive oxygen species by the mitochondrial electron transport chain. J Neurochem 80: 7807.
  • 48
    Boveris A., Oshino N., Chance B. (1972) The cellular production of hydrogen peroxide. Biochem J 128: 61730.
  • 49
    Seaver L.C., Imlay J.A. (2001) Alkyl hydroperoxide reductase is the primary scavenger of endogenous hydrogen peroxide in Escherichia coli. J Bacteriol 183: 717381.
  • 50
    González-Flecha B., Boveris A. (1995) Mitochondrial sites of hydrogen peroxide production in reperfused rat kidney cortex. Biochim Biophys Acta 1243: 3616.
  • 51
    González-Flecha B., Demple B. (1995) Metabolic sources of hydrogen peroxide in aerobically growing Escherichia coli. J Biol Chem 270: 136817.
  • 52
    Messner K.R., Imlay J.A. (1999) The identification of primary sites of superoxide and hydrogen peroxide formation in the aerobic respiratory chain and sulfite reductase complex of Escherichia coli. J Biol Chem 274: 10,11928.
  • 53
    Wei Q., Minh P.N.L., Dötsch A., Hildebrand F., Panmanee W., Elfarash A., Schulz S., Plaisance S., Charlier D., Hassett D., Häussler S., Cornelis P. (2012) Global regulation of gene expression by OxyR in an important human opportunistic pathogen. Nucleic Acids Res 40: 432033.
  • 54
    Manchado M., Michán C., Pueyo C. (2000) Hydrogen peroxide activates the SoxRS regulon in vivo. J Bacteriol 182: 68424.
  • 55
    Michán C., Manchado M., Pueyo C. (2002) SoxRS down-regulation of rob transcription. J Bacteriol 184: 473338.
  • 56
    Boshoff H.I.M., Barry C.E. III (2005) Tuberculosis - metabolism and respiration in the absence of growth. Nat Rev Microbiol 3: 7080.