• 1
    Ellen R.P., Segal D.N., Grove D.A. (1978) Relative proportions of Actinomyces viscosus and Actinomyces naeslundii in dental plaques collected from single sites. J Dent Res 57: 550.
  • 2
    Marsh P.D., Martin M.V. (1992) Dental plaque. In: Marsh P.D., Martin M.V., eds. Oral Microbiology, 4th edn. Oxford Wright pp. 5881.
  • 3
    Marsh P.D., Martin M.V. (1992) Dental caries. In: Marsh P.D., Martin M.V., eds. Oral Microbiology, 4th edn. Oxford Wright pp. 82103.
  • 4
    Moore W.E.C., Holdeman L.V., Smibert R.M., Good I.J., Burmeister J.A., Palcanis K.G., Ranney R.R. (1982) Bacteriology of experimental gingivitis in young adult humans. Infect Immun 38: 65167.
  • 5
    Moore W.E.C., Holdeman L.V., Smibert R.M., Cato E.P., Burmeister J.A., Palcanis K.G., Ranney R.R. (1984) Bacteriology of experimental gingivitis in children. Infect Immun 46: 16.
  • 6
    Moore W.E.C., Moore L.V.H. (1994) The bacteria of periodontal diseases. Periodontology 2000 5: 6677.
  • 7
    Ellen R.P., Banting D.W., Fillery E.D. (1985) Longitudinal microbiological investigation of a hospitalized population of older adults with a high root surface caries risk. J Dent Res 64: 137781.
  • 8
    van Houte J., Jordan H.V., Laraway R., Kent R., Soparkar P.M., Depaola P.F. (1990) Association of the microbial flora of dental plaque and saliva with human root-surface caries. J Dent Res 69: 14638.
  • 9
    van Houte J., Lopman J., Kent R. (1994) The predominant cultivable flora of sound and carious human root surfaces. J Dent Res 73: 172734.
  • 10
    Schüpbach P., Osterwalder V., Guggenheim B. (1995) Human root caries: microbiota in plaque covering sound, carious and arrested carious root surfaces. Caries Res 29: 38295.
  • 11
    Syed S.A., Loesche W.J., Pape H.L., Jr., Grenier E. (1975) Predominant cultivable flora isolated from human root surface caries plaque. Infect Immun 11: 72731.
  • 12
    Beighton D. (2005) The complex oral microflora of high-risk individuals and groups and its role in the caries process. Community Dent Oral Epidemiol 33: 24855.
  • 13
    Preza D., Olsen I., Aas J.A., Willumsen T., Grinde B., Paster B.J. (2008) Bacterial profiles of root caries in elderly patients. J Clin Microbiol 46: 201521.
  • 14
    Brailsford S.R., Shah B., Simons D., Gilbert S., Clark D., Ines I., Adams S.E., Allison C., Beighton D. (2001) The predominant aciduric microflora of root-caries lesions. J Dent Res 80: 182833.
  • 15
    Klaus P.S. (1986) Genus Actinomyces. In: Peter H.A.S., ed. Bergey's Manual of Systematic Bacteriology, Vol. 2, 1st edn. Baltimore: Williams & Wilkins, pp. 1383418.
  • 16
    Takahashi N., Yamada T. (1999) Glucose and lactate metabolism by Actinomyces naeslundii. Crit Rev Oral Biol Med 10: 487503.
  • 17
    Howell A., Jr., Pine L. (1956) Studies on the growth of species of Actinomyces. I. Cultivation in a synthetic medium with starch. J Bacteriol 71: 4753.
  • 18
    Schofield G.M., Schaal K.P. (1981) A numerical taxonomic study of members of the Actinomycetaceae and related taxa. J Gen Microbiol 127: 23759.
  • 19
    Takahashi N., Yamada T. (1992) Stimulatory effect of bicarbonate on the glycolysis of Actinomyces viscosus and its biochemical mechanism. Oral Microbiol Immunol 7: 16570.
  • 20
    Marsh P.D., Martin M.V. (1992) The mouth as a microbial habitat. In: Marsh P.D., Martin M.V., eds. Oral Microbiology, 4th edn. Oxford: Wright, pp. 516.
  • 21
    Shellis R.P., Dibdin G.H. (1988) Analysis of the buffering systems in dental plaque. J Dent Res 67: 43846.
  • 22
    Buzalaf J.P., Pessan J.P., Honório H.M., ten Cate J.M. (2011) Mechanisms of action of fluoride for caries control. In: Buzalaf J.P., ed. Fluoride and the Oral Environment, Monographs in Oral Science, Vol. 22. Basel: Karger, pp. 97114.
  • 23
    Kashket S., Rodriguez V.M., Bunick F.J. (1977) Inhibition of glucose utilization in oral streptococci by low concentrations of fluoride. Caries Res 11: 3017.
  • 24
    Hamilton I.R., Ellwood D.C. (1978) Effects of fluoride on carbohydrate metabolism by washed cells of Streptococcus mutans grown at various pH values in a chemostat. Infect Immun 19: 43442.
  • 25
    Marsh P.D., McDermid A.S., Keevil C.W., Ellwood D.C. (1985) Effect of environmental conditions on the fluoride sensitivity of acid production by S. sanguis NCTC 7865. J Dent Res 64: 859.
  • 26
    Hata S., Iwami Y., Kamiyama K., Yamada T. (1990) Biochemical mechanisms of enhanced inhibition of fluoride on the anaerobic sugar metabolism by Streptococcus sanguis. J Dent Res 69: 12447.
  • 27
    Maehara H., Iwami Y., Mayanagi H., Takahashi N. (2005) Synergistic inhibition by combination of fluoride and xylitol on glycolysis by mutans streptococci and its biochemical mechanism. Caries Res 39: 5218.
  • 28
    Hamilton I.R., Ellwood D.C. (1983) Carbohydrate metabolism by Actinomyces viscosus growing in continuous culture. Infect Immun 42: 1926.
  • 29
    Henssge U., Do T., Radford D.R., Gilbert S.C., Clark D., Beighton D. (2009) Emended description of Actinomyces naeslundii and descriptions of Actinomyces oris sp. nov. and Actinomyces johnsonii sp. nov., previously identified as Actinomyces naeslundii genospecies 1, 2 and WVA 963. Int J Syst Evol Microbiol 59: 50916.
  • 30
    Johnson J.L., Moore L.V., Kaneko B., Moore W.E. (1990) Actinomyces georgiae sp. nov., Actinomyces gerencseriae sp. nov., designation of two genospecies of Actinomyces naeslundii, and inclusion of A. naeslundii serotypes II and III and Actinomyces viscosus serotype II in A. naeslundii genospecies 2. Int J Syst Bacteriol 40: 27386.
  • 31
    Takahashi N., Abbe K., Takahashi-Abbe S., Yamada T. (1987) Oxygen sensitivity of sugar metabolism and interconversion of pyruvate formate-lyase in intact cells of Streptococcus mutans and Streptococcus sanguis. Infect Immun 55: 6526.
  • 32
    Hallsworth A.S., Weatherell J.A., Deutsch D. (1976) Determination of subnanogram amounts of fluoride with the fluoride electrode. Anal Chem 48: 11604.
  • 33
    Dills S.S., Apperson A., Schmidt M.R., Saier M.H., Jr. (1980) Carbohydrate transport in bacteria. Microbiol Rev 44: 385418.
  • 34
    Carlsson J. (1986) Metabolic activities of oral bacteria. In: Thylstrup A., Fejerskov O., eds. Textbook of Cariology, 1st edn. Copenhagen: Munksgaard, pp. 74106.
  • 35
    Carlsson J., Hamilton I. (1994) Metabolic activities of oral bacteria. In: Thylstrup A., Fejerskov O., eds. Textbook of Clinical Cariology. 2nd edn. Copenhagen: Munksgaard, pp. 7188.
  • 36
    Takahashi N., Kalfas S., Yamada T. (1995) Phosphorylating enzymes involved in glucose fermentation of Actinomyces naeslundii. J Bacteriol 177: 580611.
  • 37
    Bowden G.H., Nolette N., Ryding H., Cleghorn B.M. (1999) The diversity and distribution of the predominant ribotypes of Actinomyces naeslundii genospecies 1 and 2 in samples from enamel and from healthy and carious root surfaces of teeth. J Dent Res 78: 18009.
  • 38
    Tang G., Samaranayake L.P., Yip H.K. (2004) Genotypic diversity of oral Actinomyces naeslundii genospecies 1 and 2 in caries-active preschool children. Oral Microbiol Immunol 19: 3718.
  • 39
    Hüther F.J., Psarros N., Duschner H. (1990) Isolation, characterization, and inhibition kinetics of enolase from Streptococcus rattus FA-1. Infect Immun 58: 10437.
  • 40
    Kaufmann M., Bartholmes P. (1992) Purification, characterization and inhibition by fluoride of enolase from Streptococcus mutans DSM 320523. Caries Res 26: 1106.
  • 41
    Curran T.M., Buckley D.H., Marquis R.E. (1994) Quasi-irreversible inhibition of enolase of Streptococcus mutans by fluoride. FEMS Microbiol Lett 119: 2838.
  • 42
    Jenkins G.N. (1999) Review of fluoride research since 1959. Arch Oral Biol 44: 98592.
  • 43
    Germaine G.R., Tellefson L.M. (1986) Effect of endogenous phosphoenolpyruvate potential on fluoride inhibition of glucose uptake by Streptococcus mutans. Infect Immun 51: 11924.
  • 44
    Guha-Chowdhury N., Clark A.G., Sissons C.H. (1997) Inhibition of purified enolases from oral bacteria by fluoride. Oral Microbiol Immunol 12: 917.
  • 45
    Eisenberg A.D., Bender G.R., Marquis R.E. (1980) Reduction in the aciduric properties of the oral bacterium Streptococcus mutans GS-5 by fluoride. Arch Oral Biol 25: 1335.
  • 46
    Edgar W.M., Cockburn M.A., Jenkins G.N. (1981) Uptake of fluoride and its inhibitory effects in oral microorganisms in culture. Arch Oral Biol 26: 61523.
  • 47
    Nakajo K., Imazato S., Takahashi Y., Kiba W., Ebisu S., Takahashi N. (2009) Fluoride released from glass-ionomer cement is responsible to inhibit the acid production of caries-related oral streptococci. Dent Mater 25: 7038.
  • 48
    Domon-Tawaraya H., Nakajo K., Washio J., Ashizawa T., Ichino T., Sugawara H., Fukumoto S., Takahashi N. (2013) Divalent cations enhance fluoride binding to Streptococcus mutans and Streptococcus sanguinis cells and subsequently inhibit bacterial acid production. Caries Res 47: 1419.
  • 49
    Yamada T., Carlsson J. (1975) Regulation of lactate dehydrogenase and change of fermentation products in streptococci. J Bacteriol 124: 5561.
  • 50
    Buchanan B.B., Pine L. (1965) Relationship of carbon dioxide to aspartic acid and glutamic acid in Actinomyces naeslundii. J Bacteriol 80: 72933.