SEARCH

SEARCH BY CITATION

References

  • Ainsworth, E.A. & Long, S.P. (2005) What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytologist, 165, 351372.
  • Ainsworth, E.A. & Rogers, A. (2007) The response of photosynthesis and stomatal conductance to rising (CO2): mechanisms and environmental interactions. Plant Cell Environment, 30, 258270.
  • Ali, A.A. (2012) Modelling elevated carbon dioxide impacts on plant competition. PhD Thesis. 190 pp. Macquarie University, Sydney, New South Wales, Australia.
  • Arp, W.J., van Mierlo, J.E.M., Berendse, F. & Snijders, W. (1998) Interactions between elevated CO2 concentration, nitrogen and water: effects on growth and water use of six perennial species. Plant Cell Environment, 21, 111.
  • Atkin, O.K., Schortemeyer, M., McFarlane, N. & Evans, J.R. (1999) The response of fast – and slow – growing Acacia species to elevated CO2: analysis of the underlying components of relative growth rate. Oecologia, 120, 544554.
  • Bazzaz, F.A. (1979) Physiological ecology of plant succession. Annual Review of Ecology and Systematics, 10, 351371.
  • Belote, R.T., Weltzin, J.F. & Norby, R.J. (2003) Response of an understory plant community to elevated [CO]2 depends of differential responses of dominant invasive species and is mediated by soil water availability. New Phytologist, 161, 827835.
  • Berry, S.L. & Roderick, M.L. (2002) Estimating mixtures of leaf functional types using continental-scale satellite and climate data. Global Ecology & Biogeography, 11, 2339.
  • Campbell, B.D., Laing, W.A. & Newton, P.C.D. (1993) Variation in the response of pasture plants to carbon dioxide. XVII International Grassland Congress, pp. 11251126. New Zealand Grassland Association, Palmerston North, New Zealand.
  • Comins, H.N. & McMurtrie, R.E. (1993) Long-term response of nutrient-limited forests to CO2 enrichment; equilibrium behaviour of plant-soil models. Ecological Applications, 3, 666681.
  • Crous, K.Y. (2008) Nitrogen availability alters species photosynthetic responses to elevated atmospheric CO2. Doctor of Philosophy, PhD Thesis. The University of Michigan, Ann Arbor, MI, USA.
  • Crous, K.Y., Reich, P.B., Hunter, M.D. & Ellsworth, D.S. (2010) Maintenance of leaf N controls the photosynthetic CO2 response of grassland species exposed to 9 years of free-air CO2 enrichment. Global Change Biology, 16, 20762088.
  • Curtis, P.S. & Wang, X. (1998) A meta-analysis of CO2 effects on woody plant mass, form and physiology. Oecologia, 113, 299313.
  • Dewar, R.C., Medlyn, B.E. & McMurtrie, R.E. (1999) Acclimation of the respiration/photosynthesis ratio to temperature: insights from a model. Global Change Biology, 5, 615622.
  • Ellsworth, D.S., Reich, P.B., Naumburg, E.S., Koch, G.W., Kubiske, M.E. & Smith, S.D. (2004) Photosynthesis, carboxylation and leaf nitrogen responses to 16 species to elevated pCO2 across four free-air CO2 enrichment experiments in forest, grassland and dessert. Global Change Biology, 10, 21212138.
  • Farquhar, G.D. & von Caemmerer, S. (1982) Modelling of photosynthetic response to environmental conditions. Physiological Plant Ecology II: Water Relations and Carbon Assimilation (eds O. Lange, P. Nobel, C.B. Osmond & H. Zieger), pp. 549587. Springer, Berlin.
  • Field, C.B., Lund, C.P., Chiariello, N.R. & Mortimer, B.E. (1997) CO2 effects on the water budget of grassland microcosm communities. Global Change Biology, 3, 197206.
  • Hunt, R., Hand, D.W., Hannah, M.A. & Neal, A.M. (1993) Further response to CO2 enrichment in British berbaceous species. Functional Ecology, 7, 661668.
  • Joel, G., Chapin, S., Chiariello, N.R., Thayer, S.S. & Field, C.B. (2001) Species-specific responses of plant communities to altered carbon and nutrient availability. Global Change Biology, 7, 435450.
  • Jones, H.G. (1992) Plants and Microclimate: A Quantitative Approach to Environmental Plant Physiology, 2nd edn. Cambridge University Press, Cambridge.
  • Ju, S. & DeAngelis, D.L. (2009) The R* rule and energy flux in a plant-nutrient ecosystem. Journal of Theoretical Biology, 256, 326332.
  • Kimball, B.A. & Mauney, J.R. (1993) Response of cotton to varying CO2, irrigation, and nitrogen – yield and growth. Agronomy Journal, 85, 706712.
  • King, A.W., Gunderson, C.A., Post, W.M., Weston, D.J. & Wullschleger, S.D. (2006) Plant respiration in a warmer world. Science, 312, 536537.
  • Kirschbaum, M.U.F. (2011) Does enhanced photosynthesis enhance growth? Lessons learned from CO2 enrichment studies. Plant Physiology, 155, 117124.
  • Körner, C. (2006) Plant CO2 responses: an issue of definition, time and resource supply. New Phytologist, 172, 393411.
  • Körner, C. & Bazzaz, F.A. (1996) Carbon Dioxide, Populations and Communities. Academic Press, San Diego, California, USA.
  • Lee, T.D., Barrott, S.H. & Reich, P.B. (2011) Photosynthetic reponses of 13 grassland species across 11 years of free-air CO2 enrichment is modest, consistent and independent of N supply. Global Change Biology, 17, 28932904.
  • Litton, C.M., Raich, J.W. & Ryan, M.G. (2007) Carbon allocation in forest ecosystems. Global Change Biology, 13, 20892109.
  • Lloyd, J. & Farquhar, G.D. (1996) The CO2 dependence of photosynthesis, plant growth responses to elevated CO2 concentrations and their interactions with soil status. I General Principles and forest ecosystems. Functional Ecology, 10, 432.
  • Long, S.P., Ainsworth, E.A., Rogers, A. & Ort, D.R. (2004) Rising atmospheric carbon dioxide: plants FACE the future. Annual Review of Plant Biology, 55, 591628.
  • Masle, J., Hudson, G.S. & Badger, M.K. (1993) Effects of ambient CO2 concentration on growth and nitrogen use in Tobacco (Nicotiana tabacum) plants transformed with an antisense gene to the small-subunit of ribulose-1,5-bisphosphate carboxylase oxygenase. Plant Physiology, 103, 10751088.
  • McMurtrie, R.E. (1991) Relationship of forest productivity to nutrient and carbon supply – a modelling analysis. Tree Physiology, 9, 8799.
  • McMurtrie, R.E., Norby, R.J., Medlyn, B.E., Dewar, R.C., Pepper, D.A., Reich, P.B. & Barton, C.V.M. (2008) Why is plant-growth to elevated CO2 amplified when water is limiting, but reduced when nitrogen is limited? A growth-optimisation hypothesis. Functional Plant Biology, 35, 521534.
  • Medlyn, B.E., Dreyer, E., Ellsworth, D., Forstreuter, M., Harley, P.C., Kirschbaum, M.U.F., Le Roux, X., Montpied, P., Strassemeyer, J., Walcroft, A., Wang, K. & Loustau, D. (2002) Temperature response of parameters of a biochemically based model of photosynthesis. II. A review of experimental data. Plant Cell Environment, 25, 11671179.
  • Medlyn, B.E., Duursma, R.A., Eamus, D., Ellsworth, D.A., Prentice, I.C., Barton, C.V.M., Crous, K.Y., De Angelis, P., Freeman, M. & Wingate, L. (2011) Reconciling the optimal and empirical approaches to modelling stomatal conductance. Global Change Biology, 10, 13652486.
  • Morgan, J.A., Pataki, D.E., Körner, C., Clark, H., Del Grosso, S.J., Grünzweig, J.M. et al. (2004) Water relations in grassland and desert ecosystems exposed to elevated atmospheric CO2. Oecologia, 140, 1125.
  • Newman, G.S. & Hart, S.C. (2006) Nutrient covariance between forest foliage and fine roots. Forest Ecology and Management, 236, 136141.
  • Niinemets, Ü., Flexas, J. & Peñuelas, J. (2011) Evergreens favored by higher responsiveness to increased CO2. Trends in Ecology & Evolution, 26, 136142.
  • Poorter, H. (1993) Interspecific variation in the growth response of plants to an elevated ambient CO2 concentration. Vegetatio, 104, 7797.
  • Poorter, H. (1998) Do slow – growing species and nutrient – stressed plants respond relatively strongly to elevated CO2? Global Change Biology, 4, 693697.
  • Poorter, H. & Navas, M.L. (2003) Plant growth and competition at elevated CO2: on winners, losers and functional groups. New Phytologist, 157, 175198.
  • Reich, P.B., Walters, M.B., Tjoelker, M.G., Vanderklein, D. & Buschena, C. (1998) Photosynthesis and respiration rates depend on leaf and root morphology and nitrogen concentration in nine boreal tree species differing in relative growth rate. Functional Ecology, 12, 395405.
  • Reich, P.B., Knops, J., Tilman, D., Craine, J., Ellsworth, D., Tjoelker, M., Lee, T., Naeem, S., Wedin, D., Bahauddin, D., Hendrey, G., Jose, S., Wrage, K., Goth, J. & Bengston, W. (2001a) Plant diversity enhances ecosystem responses to elevated CO2 and nitrogen deposition. Nature, 410, 809812.
  • Reich, P.B., Tilman, D., Craine, J., Ellsworth, D., Tjoelker, M.G., Knops, J., Wedin, D., Naeem, S., Bahauddin, D., Goth, J., Bengstone, W. & Lee, T.D. (2001b) Do species and functional groups differ in acquisition and use of C, N and water under varying atmospheric CO2 and N availability regimes? A field test with 16 grassland species. New Phytologist, 150, 435448.
  • Reich, P.B., Peterson, D.A., Wrage, K. & Wedin, D. (2001c) Fire and vegetation effects on productivity and nitrogen cycling across a forest-grassland continuum. Ecology, 82, 17031719.
  • Reich, P.B., Tjoelker, M.G., Pregitzer, K.S., Wright, I.J., Oleksyn, J. & Machado, J.L. (2008) Scaling of respiration to nitrogen in leaves, stems and roots of higher land plants. Ecology Letters, 11, 793801.
  • Rogers, A., Ainsworth, E.A. & Leakey, A.D.B. (2009) Will elevated carbondioxide concentration amplify the benefits of nitrogen fixation In legumes? Plant Physiology, 151, 10091016.
  • Roumet, C., Bel, M.P., Sonié, L., Jardon, F. & Roy, J. (1996) Growth response of grasses to elevated CO2: a physiological plurispecific analysis. New Phytologist, 133, 595603.
  • Sands, P.J. (1995) Modelling Canopy Production II. From single-leaf photosynthetic parameters to daily canopy photosynthesis. Australian Journal of Plant Physiology, 22, 603614.
  • Saxe, H., Ellsworth, D.S. & Heath, J. (1998) Tree and forest functioning in an enriched CO2 atmosphere. New Phytologist, 139, 395436.
  • Schulze, H., Härtling, S. & Stange, C.F. (2011) Species-specific differences in nitrogen uptake and utilization by six European tree species. Journal of Plant Nutrition and Soil Science, 174, 2837.
  • Stitt, M. (1991) Rising CO2 levels and their potential significance for carbon flow in photosynthetic cells. Plant Cell and Environment, 14, 741762.
  • Thomson, W.A., Huang, L.K. & Kriedemann, P.E. (1992) Photosynthetic response to light and nutrients in sun-tolerant and shade-tolerant rainforest trees. II. Leaf gas exchange and component processes of photosynthesis. Australian Journal of Plant Physiology, 19, 1942.
  • Tjoelker, M., Oleksyn, J. & Reich, P.B. (1998) Temperature and ontogeny mediate growth responses to elevated CO2 in seedlings of five boreal tree species. New Phytologist, 140, 197210.
  • Tjoelker, M.G., Craine, J.M., Wedin, D., Reich, P.B. & Tilman, D. (2005) Linking leaf and root trait syndromes among 39 grassland and savannah species. New Phytologist, 167, 493508.
  • Wand, S.J.E., Midgley, G.F., Jones, M.H. & Curtis, P.S. (1999) Responses of wild C4 and C3 grass (Poaceae) species to elevated atmospheric CO2 concentration: a meta-analytic test of current theories and perceptions. Global Change Biology, 5, 723741.
  • Waring, R.H., Landsberg, J. & Williams, M. (1998) Net primary production of forests: a constant fraction of gross primary production? Tree Physiology, 18, 129134.
  • Wright, I.J., Reich, P.B., Westoby, M., Ackerly, D.D., Baruch, Z., Bongers, F., Cavender-Bares, J., Chapin, T., Cornelissen, J.H.C., Diemer, M., Flexas, J., Garnier, E., Groom, P.K., Gulias, J., Hikosaka, K., Lamont, B.B., Lee, T., Lee, W., Lusk, C., Midgley, J.J., Navas, M.L., Niinemets, U., Oleksyn, J., Osada, N., Poorter, H., Poot, P., Prior, L., Pyankov, V.I., Roumet, C., Thomas, S.C., Tjoelker, M.G., Veneklaas, E.J. & Villar, R. (2004) The worldwide leaf economics spectrum. Nature, 428, 821827.
  • Wullschleger, S.D. (1993) Biochemical limitations to carbon assimilation in C3 plants: a retrospective analysis of A/Ci curves from 109 species. Journal of Experimental Botany, 44, 907920.
  • Zerihun, A. & Bassirirad, H. (2001) Interspecies variation in nitrogen uptake kinetic responses of temperate forest species to elevated CO2: potential causes and consequences. Global Change Biology, 7, 211222.