SEARCH

SEARCH BY CITATION

References

  • Abhilasha, D., Quintana, N., Vivanco, J. & Joshi, J. (2008) Do allelopathic compounds in invasive Solidago canadensis s.l. restrain the native European flora? Journal of Ecology, 96, 9931001.
  • Allen, M.F. (1996) The ecology of arbuscular mycorrhizas: a look back into the 20th century and a peek into the 21st. Mycological Research, 100, 769782.
  • Babikova, Z., Gilbert, L., Bruce, T.J.A., Birkett, M., Caulfield, J.C., Woodcock, C. et al. (2013) Underground signals carried through common mycelial networks warn neighbouring plants of aphid attack. Ecology Letters, 16, 835884.
  • Barto, E.K., Hilker, M., Mueller, F., Mohney, B.K., Weidenhamer, J.D. & Rillig, M.C. (2011) The fungal fast lane: common mycorrhizal networks extend bioactive zones of allelochemicals in soils. PLoS ONE, 6, e27195.
  • Barto, E.K., Weidenhamer, J.D., Cipollini, D. & Rillig, M.C. (2012) Fungal superhighways: do common mycorrhizal networks enhance below ground communication? Trends in Plant Science, 17, 633637.
  • Bertin, C., Yang, X.H. & Weston, L.A. (2003) The role of root exudates and allelochemicals in the rhizosphere. Plant and Soil, 256, 6783.
  • Blair, A.C., Hanson, B.D., Brunk, G.R., Marrs, R.A., Westra, P., Nissen, S.J. et al. (2005) New techniques and findings in the study of a candidate allelochemical implicated in invasion success. Ecology Letters, 8, 10391047.
  • Blair, A.C., Nissen, S.J., Brunk, G.R. & Hufbauer, R.A. (2006) A lack of evidence for an ecological role of the putative allelochemical (±)-catechin in spotted knapweed invasion success. Journal of Chemical Ecology, 32, 23272331.
  • Blum, U. (2004) Fate of phenolic allelochemicals in soils – the role of soil and rhizosphere microorganisms. Allelopathy: Chemistry and Mode of Action of Allelochemicals (eds F. A. Macías, J. C. G. Galindo, J. M. G. Molinillo & H. G. Cutler), pp. 5776. CRC Press, Boca Raton, FL.
  • Callaway, R.M. & Ridenour, W.M. (2004) Novel weapons: invasive success and the evolution of increased competitive ability. Frontiers in Ecology and the Environment, 2, 436443.
  • Callaway, R.M., Cipollini, D., Barto, K., Thelen, G.C., Hallett, S.G., Prati, D. et al. (2008) Novel weapons: invasive plant suppresses fungal mutualists in America but not in its native Europe. Ecology, 89, 10431055.
  • Choesin, D.N. & Boerner, R.E.J. (1991) Allyl isothiocyanate release and the allelopathic potential of Brassica napus (Brassicaceae). American Journal of Botany, 78, 10831090.
  • Cipollini, D., Rigsby, C.M. & Barto, E.K. (2012) Microbes as targets and mediators of allelopathy in plants. Journal of Chemical Ecology, 38, 714727.
  • Crist, C.R. & Sherf, A.F. (eds.) (1973) Walnut Wilt. Cornell University, Horticulture Extension, Bulletin, Ithaca, NY.
  • Daglish, C. (1950) The isolation and identification of a hydrojuglone glycoside occurring in the walnut. Biochemical Journal, 47, 452457.
  • Descisciolo, B., Leopold, D.J. & Walton, D.C. (1990) Seasonal patterns of Juglone in soil beneath Juglans nigra (Black walnut) and influence of J. nigra on understory vegetation. Journal of Chemical Ecology, 16, 11111130.
  • Dolcet-Sanjuan, R., Claveria, E., Camprubi, A., Estaun, V. & Calvet, C. (1996) Micropropagation of walnut trees (Juglans regia L.) and response to arbuscular mycorrhizal inoculation. Agronomie, 16, 639645.
  • Duhamel, M., Pel, R., Ooms, A., Bücking, H., Jansa, J., Ellers, J. et al. (2013) Do fungivores trigger the transfer of protective metabolites from host plants to arbuscular mycorrhizal hyphae? Ecology, 94, 20192029.
  • Egerton-Warburton, L.M., Querejeta, J.I. & Allen, M.F. (2007) Common mycorrhizal networks provide a potential pathway for the transfer of hydraulically lifted water between plants. Journal of Experimental Botany, 58, 14731483.
  • Endlweber, K. & Scheu, S. (2006) Establishing arbuscular mycorrhiza-free soil: a comparison of six methods and their effects on nutrient mobilization. Applied Soil Ecology, 34, 276279.
  • Giovannetti, M., Azzolini, D. & Citernesi, A.S. (1999) Anastomosis formation and nuclear and protoplasmic exchange in arbuscular mycorrhizal fungi. Applied and Environmental Microbiology, 65, 55715575.
  • Girzu, M., Fraisse, D., Carnat, A.P., Carnat, A. & Lamaison, J.L. (1998) High-performance liquid chromatographic method for the determination of juglone in fresh walnut leaves. Journal of Chromatography A, 805, 315318.
  • Hammer, E.C., Pallon, J., Wallander, H. & Olsson, P.A. (2011) Tit for tat? A mycorrhizal fungus accumulates phosphorus under low plant carbon availability. FEMS Microbiology Ecology, 76, 236244.
  • Harley, J.L. & Harley, E.L. (1987) A check-list of mycorrhiza in the British flora. New Phytologist, 105, 1102.
  • He, X.H., Critchley, C. & Bledsoe, C. (2003) Nitrogen transfer within and between plants through common mycorrhizal networks (CMNs). Critical Reviews in plant sciences, 22, 531567.
  • Hejl, A.M., Einhellig, F.A. & Rasmussen, J.A. (1993) Effects of juglone on growth, photosynthesis, and respiration. Journal of Chemical Ecology, 19, 559568.
  • Hejl, A.M. & Koster, K.L. (2004) Juglone disrupts root plasma membrane H(+)atpase activity and impairs water uptake, root respiration, and growth in soybean (Glycine max) and corn (Zea mays). Journal of Chemical Ecology, 30, 453471.
  • Hesse, P.R.E. (1971) A Textbook of Soil Chemical Analysis, pp. 255300. John Murray, London.
  • Hoffman, M.L., Weston, L.A., Snyder, J.C. & Regnier, E.E. (1996) Allelopathic influence of germinating seeds and seedlings of cover crops on weed species. Weed Science, 44, 579584.
  • Inderjit, (2001) Soil: environmental effects on allelochemical activity. Agronomy Journal, 93, 7984.
  • Inderjit, (2005) Soil microorganisms: an important determinant of allelopathic activity. Plant and Soil, 274, 227236.
  • Jakobsen, I., Abbott, L.K. & Robson, A.D. (1992) External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum 3. Hyphal transport of P-32 over defined distances. New Phytologist, 120, 509516.
  • Johnson, D., Leake, J.R. & Read, D.J. (2001) Novel in-growth core system enables functional studies of grassland mycorrhizal mycelial networks. New Phytologist, 152, 555562.
  • Jose, S. & Gillespie, A.R. (1998) Allelopathy in black walnut (Juglans nigra L.) alley cropping. I. Spatio-temporal variation in soil juglone in a black walnut-corn (Zea mays L.) alley cropping system in the midwestern USA. Plant and Soil, 203, 191197.
  • Kaur, H., Kaur, R., Kaur, S., Baldwin, I.T. & Inderjit, (2009) Taking ecological function seriously: soil microbial communities can obviate allelopathic effects of released metabolites. PLoS ONE, 4, e4700.
  • Macias, F.A., Galindo, J.L.G. & Galindo, J.C.G. (2007) Evolution and current status of ecological phytochemistry. Phytochemistry, 68, 29172936.
  • McKeague, J.A. (1978) Manual on soil sampling and methods of analysis. Canadian Society of Soil Science, 2, 212.
  • Meding, S.M. & Zasoski, R.J. (2008) Hyphal-mediated transfer of nitrate, arsenic, cesium, rubidium, and strontium between arbuscular mycorrhizal forbs and grasses from a California oak woodland. Soil Biology & Biochemistry, 40, 126134.
  • Mikkelsen, B.L., Rosendahl, S. & Jakobsen, I. (2008) Underground resource allocation between individual networks of mycorrhizal fungi. New Phytologist, 180, 890898.
  • Nakano-Hylander, A. & Olsson, P.A. (2007) Carbon allocation in mycelia of arbuscular mycorrhizal fungi during colonisation of plant seedlings. Soil Biology & Biochemistry, 39, 14501458.
  • Paul, E.A. & Clark, F.E. (1989) Soil Microbiology and Biochemistry. Academic, New York.
  • Plamboeck, A.H., Dawson, T.E., Egerton-Warburton, L.M., North, M., Bruns, T.D. & Querejeta, J.I. (2007) Water transfer via ectomycorrhizal fungal hyphae to conifer seedlings. Mycorrhiza, 17, 439447.
  • Ponder, F. & Tadros, S.H. (1985) Juglone concentration in soil beneath Black walnut interplanted with nitrogen-fixing species. Journal of Chemical Ecology, 11, 937942.
  • Prataviera, A.G., Kuniyuki, A.H. & Ryugo, K. (1983) Growth inhibitors in xylem exudates of Persian walnuts (Juglans regia L.) and their possible role in graft failure. Journal of the American Society for Horticultural Science, 108, 10431045.
  • Querejeta, J.I., Egerton-Warburton, L.M. & Allen, M.F. (2003) Direct nocturnal water transfer from oaks to their mycorrhizal symbionts during severe soil drying. Oecologia, 134, 5564.
  • R Core Team (2012) R: A Language and Environment for Statistical Computing. Vienna, Austria. http://www.R-project.org.
  • Reigosa, M., Pedrol, N. & Gonzales, L. (2006) Allelopathy: A Physiological Process with Ecological Implications. Springer, Plymouth.
  • Rettenmaier, H., Kupas, U. & Lingens, F. (1983) Degradation of Juglone by Pseudomonas putida J1. Fems Microbiology Letters, 19, 193195.
  • Rice, E.L. (1974) Allelopathy. Academic Press, New York.
  • Rietveld, W.J. (1983) Allelopathic effects of Juglone on germination and growth of several herbaceous and woody species. Journal of Chemical Ecology, 9, 295308.
  • Sasikumar, K., Vijayalakshmi, C. & Parthiban, K.T. (2004) Allelopathic effects of four Eucalyptus species on cowpea (Vigna unguiculata). Journal of Tropical Forest Science, 16, 419428.
  • Schmidt, S.K. (1988) Degradation of Juglone by soil bacteria. Journal of Chemical Ecology, 14, 15611571.
  • Schmidt, S.K. & Ley, R.E. (1999) Microbial competition and soil structure limit the expression of allelochemicals in nature. Principles and Practices in Plant Ecology (eds Inderjit, K. M. M. Dakshihi & C. L. Foy), pp. 339351. CRC Press, Boca Raton, FL.
  • Segura-Aguilar, J., Hakman, I. & Rydstrom, J. (1992) The effect of 5OH-1,4-Naphthochinon on norway spruce seeds during germination. Plant Physiology, 100, 19551961.
  • Small, C.J., White, D.C. & Hargbol, B. (2010) Allelopathic influences of the invasive Ailanthus altissima on a native and a non-native herb. Journal of the Torrey Botanical Society, 137, 366372.
  • Smith, S.E. & Read, D.J. (1997) Mycorrhizal Symbiosis. Academic Press, San Diego and London.
  • Song, Y., Zeng, R.S., Xu, J.A.F., Li, J., Shen, X.A. & Yihdego, W.G. (2010) Interplant communication of tomato plants through underground common mycorrhizal networks. PLoS ONE, 5, e13324.
  • Sun, Y.Z., Yang, L.X., Wang, Z.Q. & Fan, J. (2013) Temporal variations in soil juglone and soil microbial community structure under Manchurian walnut (Juglans mandshurica Maxim.) plantations. Allelopathy Journal, 31, 169179.
  • Vierheilig, H., Coughlan, A.P., Wyss, U. & Piche, Y. (1998) Ink and vinegar, a simple staining technique for arbuscular-mycorrhizal fungi. Applied and Environmental Microbiology, 64, 50045007.
  • Voets, L., De La Providencia, I.E. & Declerck, S. (2006) Glomeraceae and Gigasporaceae differ in their ability to form hyphal networks. New Phytologist, 172, 185188.
  • Von Kiparski, G.R., Lee, L.S. & Gillespie, A.R. (2007) Occurrence and fate of the phytotoxin juglone in alley soils under black walnut trees. Journal of Environmental Quality, 36, 709717.
  • Wang, B. & Qiu, Y.L. (2006) Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza, 16, 299363.
  • Whittaker, R.H. & Feeny, P.P. (1971) Allelochemicals – chemical interaction between species. Science, 171, 757770.
  • Willis, R.J. (2000) Juglans spp, juglone and allelopathy. Allelopathy Journal, 7, 155.