SEARCH

SEARCH BY CITATION

References

  • Abdelghany, A.Y., Awadalla, S.S., Abdel-Baky, N.F., El-Syrafi, H.A. & Fields, P.G. (2010) Effect of high and low temperatures on the drugstore beetle (Coleoptera: Anobiidae). Journal of Economic Entomology, 103, 19091914.
  • Addo-Bediako, A., Chown, S.L. & Gaston, K.J. (2000) Thermal tolerance, climatic variability and latitude. Proceedings Biological Sciences/The Royal Society, 267, 739745.
  • Angilletta, M.J. Jr (2009) Thermal Adaptation. A Theoretical and Empirical Synthesis. Oxford University Press, Oxford, UK.
  • Araújo, M.B., Ferri-Yáñez, F., Bozinovic, F., Marquet, P.A., Valladares, F. & Chown, S.L. (2013) Heat freezes niche evolution. Ecology Letters, 16, 12061219.
  • Armstrong, J.W., Tang, J. & Wang, S. (2009) Thermal death kinetics of Mediterranean, Malasyan, melon and oriental fruit fly (Diptera: Tephritidae) eggs and third instars. Journal of Economic Entomology, 102, 522532.
  • Berrigan, D. (2000) Correlations between measures of thermal stress resistance within and between species. Oikos, 89, 301304.
  • Berrigan, D. & Hoffmann, A.A. (1998) Correlations between measures of heat resistance and acclimation in two species of Drosophila and their hybrids. Biological Journal of the Linnean Society, 64, 449462.
  • Bigelow, W.D. (1921) The logarithmic nature of thermal death time curves. Journal of Infectious Diseases, 29, 528536.
  • Carvalho, P., Diniz-Filho, J.A.F. & Bini, L.M. (2006) Factors influencing changes in trait correlations across species after using phylogenetic independent contrasts. Evolutionary Ecology, 20, 591602.
  • Castañeda, L.E., Calabria, G., Betancourt, L.A., Rezende, E.L. & Santos, M. (2012) Measurement error in heat tolerance assays. Journal of Thermal Biology, 37, 432437.
  • Cerdá, X. & Retana, J. (2000) Alternative strategies by thermophilic ants to cope with extreme heat: individual versus colony level traits. Oikos, 89, 155163.
  • Cerdá, X., Retana, J. & Cros, S. (1998) Critical thermal limits in Mediterranean ant species: trade-off between mortality risk and foraging performance. Functional Ecology, 12, 4555.
  • Chidawanyika, F. & Terblanche, J.S. (2011) Rapid thermal responses and thermal tolerance in adult codling moth Cydia pomonella (Lepidoptera: Tortricidae). Journal of Insect Physiology, 57, 108117.
  • Chown, S.L., Jumbam, K.R., Sørensen, J.G. & Terblanche, J.S. (2009) Phenotypic variance, plasticity and heritability estimates of critical thermal limits depend on methodological context. Functional Ecology, 23, 133140.
  • Cooper, B.S., Williams, B.H. & Angilletta, M.J. (2008) Unifying indices of heat tolerance in ectotherms. Journal of Thermal Biology, 33, 320323.
  • Cowles, R.B. & Bogert, C.M. (1944) A preliminary study of the thermal requirements of desert reptiles. Bulletin of the American Museum of Natural History, 83, 261296.
  • David, J.R., Gibert, P., Moreteau, B., Gilchrist, G.W. & Huey, R.B. (2003) The fly that came in from the cold: geographic variation of recovery time from low-temperature exposure in Drosophila subobscura. Functional Ecology, 17, 425430.
  • Delinger, D.L. & Lee, R.E. (1998) Physiology of cold sensitivity. Temperature Sensitivity in Insects and Application in Integrated Pest Management (eds G.J. Hallmann & D.L. Delinger), pp. 5595. Westview Press, Oxford, UK.
  • Deutsch, C.A., Tewksbury, J.J., Huey, R.R., Sheldon, K.S., Ghalambor, C.K., Haak, D.C. et al. (2008) Impacts of climate warming on terrestrial ectotherms across latitude. Proceedings of the National Academy of Sciences of the United States of America, 105, 66686672.
  • Diamond, S.E., Sorger, D.M., Hulcr, J., Pelini, S.L., Del Toro, I., Hirsch, C. et al. (2012) Who likes it hot? A global analysis of the climatic, ecological, and evolutionary determinants of warming tolerance in ants. Global Change Biology, 18, 448456.
  • Fields, P.G. (1992) The control of stored-product insects and mites with extreme temperatures. Journal of Stored Products Research, 28, 89118.
  • Hochachka, P.W. & Somero, G.N. (2002) Biochemical Adaptation. Mechanism and Process in Physiological Evolution. Oxford University Press, New York, NY.
  • Hoffmann, A.A., Chown, S.L. & Clusella-Trullas, S. (2013) Upper thermal limits in terrestrial ectotherms: how constrained are they? Functional Ecology, 27, 934949.
  • Hoffmann, A.A. & Sgrò, C.M. (2011) Climate change and evolutionary adaptation. Nature, 470, 429485.
  • Hoffmann, A.A., Sørensen, J.G. & Loeschcke, V. (2003) Adaptation of Drosophila to temperature extremes: bringing together quantitative and molecular approaches. Journal of Thermal Biology, 28, 175216.
  • Hoffmann, A.A., Dagher, H., Hercus, M. & Berrigan, D. (1997) Comparing different measures of heat resistance in selected lines of Drosophila melanogaster. Journal of Insect Physiology, 43, 393405.
  • Huey, R.B. & Bennett, A.F. (1987) Phylogenetic studies of coadaptation: preferred temperatures versus optimal performance temperatures of lizards. Evolution, 41, 10981115.
  • Huey, R. & Kingsolver, J. (1989) Evolution of thermal sensitivity of ectotherm performance. Trends in Ecology & Evolution, 4, 131135.
  • Huey, R.B., Deutsch, C.A., Tewksbury, J.J., Vitt, L.J., Hertz, P.E., Álvarez Pérez, H.J. et al. (2009) Why tropical forest lizards are vulnerable to climate warming. Proceedings of the Royal Society B: Biological Sciences, 276, 19391948.
  • Imai, T. & Harada, H. (2006) Low-temperature as an alternative to fumigation to disinfest stored tobacco of the cigarette beetle, Lasioderma serricorne (F.) (Coleoptera: Anobiidae). Applied Entomology and Zoology, 41, 8791.
  • Lee, R.E. Jr (1989) Insect cold-hardiness: to freeze or not to freeze. BioScience, 39, 308313.
  • Loganathan, M., Jayas, D.S., Fields, P.G. & White, N.D.G. (2011) Low and high temperatures for the control of cowpea beetle, Callosobruchus maculatus (F.) (coleoptera: Bruchidae) in chickpeas. Journal of Stored Products Research, 47, 244248.
  • Lutterschmidt, W.I. & Hutchison, V.H. (1997) The critical thermal maximum: data to support the onset of spasms as the definitive end point. Canadian Journal of Zoology, 75, 15531560.
  • Maynard Smith, J. (1957) Temperature tolerance and acclimatization in Drosophila subobscura. Journal of Experimental Biology, 34, 8596.
  • Mitchell, K.A. & Hoffmann, A.A. (2010) Thermal ramping rate influences evolutionary potential and species differences for upper thermal limits in Drosophila. Functional Ecology, 24, 694700.
  • Overgaard, J., Hoffmann, A.A. & Kristensen, T.N. (2011) Assessing population and environmental effects on thermal resistance in Drosophila melanogaster using ecologically relevant assays. Journal of Thermal Biology, 36, 409416.
  • Overgaard, J., Tomcala, A., Sorensen, J.G., Holmstrup, M., Krogh, P.H., Simek, P. et al. (2008) Effects of acclimation temperature on thermal tolerance and membrane phospholipid composition in the fruit fly Drosophila melanogaster. Journal of Insect Physiology, 54, 619629.
  • Pörtner, H.O. (2002) Climate variations and the physiological basis of temperature dependent biogeography: systemic to molecular hierarchy of thermal tolerance in animals. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 132, 739761.
  • Pörtner, H.O. (2010) Oxygen- and capacity-limitation of thermal tolerance: a matrix for integrating climate-related stressor effects in marine ecosystems. Journal of Experimental Biology, 213, 881893.
  • Renault, D., Nedved, D., Hervant, F. & Vernon, P. (2004) The importance of fluctuating thermal regimes for repairing chill injuries in the tropical beetle Alphitobius diaperinus (Coleoptera: Tenebrionidae) during exposure to low temperature. Physiological Entomology, 29, 139145.
  • Rezende, E.L. & Santos, M. (2012) Comment on ‘Ecologically relevant measures of tolerance to potentially lethal temperatures'. Journal of Experimental Biology, 215, 702703.
  • Rezende, E.L., Tejedo, M. & Santos, M. (2011) Estimating the adaptive potential of critical thermal limits: methodological problems and evolutionary implications. Functional Ecology, 25, 111121.
  • Santos, M., Castañeda, L.E. & Rezende, E.L. (2011) Making sense of heat tolerance estimates in ectotherms: lessons from Drosophila. Functional Ecology, 25, 11691180.
  • Santos, M., Castañeda, L.E. & Rezende, E.L. (2012) Keeping pace with climate change: what is wrong with the evolutionary potential of upper thermal limits? Ecology and Evolution, 2, 28662880.
  • Sgrò, C.M., Overgaard, J., Kristensen, T.N., Mitchell, K.A., Cockerell, F.E. & Hoffmann, A.A. (2010) A comprehensive assessment of geographic variation in heat tolerance and hardening capacity in populations of Drosophila melanogaster from eastern Australia. Journal of Evolutionary Biology, 23, 24842493.
  • Sheridan, J.A. & Bickford, D. (2011) Shrinking body size as an ecological response to climate change. Nature Climate Change, 1, 401406.
  • Sinclair, B.J. (1999) Insect cold tolerance: how many kinds of frozen? European Journal of Entomology, 96, 157164.
  • Sinclair, B.J., Vernon, P., Jaco Klock, C. & Chown, S.L. (2003) Insects at low temperatures: an ecological perspective. Trends in Ecology & Evolution, 18, 257262.
  • Strang, T.J.K. (1992) A review of published temperatures for the control of pest insects in museums. Collection Forum, 8, 4167.
  • Sunday, J.M., Bates, A.E. & Dulvy, N.K. (2011) Global analysis of thermal tolerance and latitude in ectotherms. Proceedings of the Royal Society B: Biological Sciences, 278, 18231830.
  • Tang, J., Ikediala, J.N., Wang, S., Hansen, J.D. & Cavalieri, R.P. (2000) High-temperature-short-time thermal quarantine methods. Postharvest Biology and Technology, 21, 129145.
  • Tang, J., Mitcham, E., Wang, E. & Lurie, S. (2007) Heat Treatment for Postharvest Pest Control. Pp. xiv + 349. Cromwell Press, Trowbridge.
  • Terblanche, J.S., Deere, J.A., Clusella-Trullas, S., Janion, C. & Chown, S.L. (2007) Critical thermal limits depend on methodological context. Proceedings of the Royal Society B: Biological Sciences, 274, 29352942.
  • Terblanche, J.S., Clusella-Trullas, S., Deere, J.A. & Chown, S.L. (2008) Thermal tolerance in a south-east African population of the tsetse fly Glossina pallidipes (Diptera, Glossinidae): implications for forecasting climate change impacts. Journal of Insect Physiology, 54, 114127.
  • Terblanche, J.S., Hoffmann, A.A., Mitchell, K., Rako, L., Le Roux, P.C. & Chown, S.L. (2011) Ecologically relevant measures of tolerance to potentially lethal temperatures. Journal of Experimental Biology, 214, 37133725.
  • Wang, S., Tang, J., Johnson, J.A. & Hansen, J.D. (2002) Thermal-death kinetics of fifth-instar Amyelois transitella (Walker) (Lepidoptera: Pyralidae). Journal of Stored Products Research, 38, 427440.