Indirect and mitigated effects of pulsed resources on the population dynamics of a northern rodent

Authors


Correspondence author. E-mail: nlobo3@uwo.ca

Summary

  1. Pulsed resources have significant effects on population and community dynamics in terrestrial ecosystems. Mast seeding is an important resource pulse in deciduous forests; these boom and bust cycles of seed production generate strong lagged population responses by post-dispersal seed predators such as rodents, which then cascade through multiple trophic levels and regulate population dynamics of their predators and prey. However, similar interactions in another major pulsed system, coniferous forests, are inconsistent, and the effects of interannual variation in conifer seed production on many consumer populations are largely unknown.
  2. We used large-scale manipulation and intensive monitoring to examine the population dynamics of deer mice (Peromyscus maniculatus) in relation to fall seed production by two northern conifers, white spruce (Picea glauca) and subalpine fir (Abies lasiocarpa). Previous studies have shown that spruce seeds are a preferred food source of mice, while fir seeds are generally avoided if other foods are available. Therefore, we expected that there would be a positive relationship between mouse demography and previous spruce seed production, but no effect of fir mast seeding.
  3. Supplementation of a mouse population using spruce seeds indicated that increased fall spruce seed availability can enhance overwinter survival and population densities in the following spring, summer, and fall. However, long-term population monitoring indicated that mouse demography was not positively affected by spruce mast seeding, likely due to strong interspecific competition with the North American red squirrel (Tamiasciurus hudoniscus), a dominant pre-dispersal spruce seed predator.
  4. Conversely, we observed an unexpected delayed effect of fir mast seeding, where increased fall fir seed production did not influence overwinter or spring mouse demography, but instead enhanced summer survival, body masses and pregnancy rates of overwintered adults. This led to increased summer population densities and may have been mediated by population responses of invertebrate post-dispersal seed predators to increased fir seed availability.
  5. Our results indicate that rodent responses to resource pulses in coniferous forests are more complex than in deciduous environments and reveal previously unobserved direct and indirect consumer–resource dynamics that require further examination. This system is ideal for the large-scale, integrative ecosystem studies that ecologists are encouraged to pursue.

Ancillary