SEARCH

SEARCH BY CITATION

References

  • Aboagye-Antwi, F. & Tripet, F. (2010) Effects of larval growth condition and water availability on desiccation resistance and its physiological basis in adult Anopheles gambiae sensu stricto. Malaria Journal, 9, 225.
  • Aboagye-Antwi, F., Guindo, A., Traore, A.S., Hurd, H., Coulibaly, M., Traore, S. et al. (2010) Hydric stress-dependent effects of Plasmodium falciparum infection on the survival of wild-caught Anopheles gambiae female mosquitoes. Malaria Journal, 9, 243.
  • Adamo, S.A. (1999) Evidence for adaptive changes in egg laying in crickets exposed to bacteria and parasites. Animal Behaviour, 57, 117124.
  • Ahmed, A.M. & Hurd, H. (2006) Immune stimulation and malaria infection impose reproductive costs in Anopheles gambiae via follicular apoptosis. Microbes and Infection, 8, 308315.
  • Anderson, R.A., Knols, B.G.J. & Koella, J.C. (2000) Plasmodium falciparum sporozoites increase feeding-associated mortality of their mosquito hosts Anopheles gambiae s.l. Parasitology, 120, 329333.
  • Araujo, R.V., Maciel, C., Hartfelder, K. & Capurro, M.L. (2011) Effects of Plasmodium gallinaceum on hemolymph physiology of Aedes aegypti during parasite development. Journal of Insect Physiology, 57, 265273.
  • Arensburger, P., Megy, K., Waterhouse, R.M., Abrudan, J., Amedeo, P., Antelo, B. et al. (2010) Sequencing of Culex quinquefasciatus establishes a platform for mosquito comparative genomics. Science Signaling, 330, 8687.
  • Bensch, S., Stjernman, M., Hasselquist, D., Ostman, O., Hansson, B., Westerdahl, H. et al. (2000) Host specificity in avian blood parasites: a study of Plasmodium and Haemoproteus mitochondrial DNA amplified from birds. Proceedings of the Royal Society of London Series B: Biological Sciences, 267, 15831589.
  • Briegel, H. (1990) Metabolic relationship between female body size, reserves, and fecundity of Aedes aegypti. Journal of Insect Physiology, 36, 165172.
  • Christe, P., de Lope, F., Gonzalez, G., Saino, N. & Møller, A.P. (2001) The influence of environmental conditions on immune responses, morphology and recapture probability of nestling house martins (Delichon urbica). Oecologia, 126, 333338.
  • Christe, P., Giorgi, M.S., Vogel, P. & Arlettaz, R. (2003) Differential species-specific ectoparasitic mite intensities in two intimately coexisting sibling bat species: resource-mediated host attractiveness or parasite specialization? Journal of Animal Ecology, 72, 866872.
  • Christe, P., Glaizot, O., Strepparava, N., Devevey, G. & Fumagalli, L. (2012) Twofold cost of reproduction: an increase in parental effort leads to higher malarial parasitaemia and to a decrease in resistance to oxidative stress. Proceedings of the Royal Society of London Series B: Biological Sciences, 279, 11421149.
  • Cohuet, A., Osta, M.A., Morlais, I., Awono-Ambene, P.H., Michel, K., Simard, F. et al. (2006) Anopheles and Plasmodium: from laboratory models to natural systems in the field. Embo Reports, 7, 12851289.
  • Cohuet, A., Harris, C., Robert, V. & Fontenille, D. (2010) Evolutionary forces on Anopheles: what makes a malaria vector? Trends in Parasitology, 26, 130136.
  • Combes, C. (2001) Parasitism: the Ecology and Evolution of Intimate Interactions. Chicago University Press, Chicago.
  • Crawley, M.J. (2007) The R Book. John Wiley, New York.
  • Darbro, J.M. & Harrington, L.C. (2007) Avian defensive behavior and blood-feeding success of the West Nile vector mosquito, Culex pipiens. Behavioral Ecology, 18, 750757.
  • Dye, C. (1986) Vectorial capacity: must we measure all its components? Parasitology Today, 2, 203209.
  • Ejiri, H., Sato, Y., Kim, K.S., Tamashiro, M., Tsuda, Y., Toma, T. et al. (2011) First record of avian Plasmodium DNA from mosquitoes collected in the Yaeyama archipelago, Southwestern border of Japan. Journal of Veterinary Medical Science, 73, 15211525.
  • Ferguson, H.M. & Read, A.F. (2002a) Genetic and environmental determinants of malaria parasite virulence in mosquitoes. Proceedings of the Royal Society of London Series B: Biological Sciences, 269, 12171224.
  • Ferguson, H.M. & Read, A.F. (2002b) Why is the effect of malaria parasites on mosquito survival still unresolved? Trends in Parasitology, 18, 256261.
  • Ferguson, H.M., Rivero, A. & Read, A.F. (2003) The influence of malaria parasite genetic diversity and anaemia on mosquito feeding and fecundity. Parasitology, 127, 919.
  • Ferguson, H.M., MacKinnon, M.J., Chan, B.H. & Read, A.F. (2003) Mosquito mortality and the evolution of malaria virulence. Evolution, 57, 27922804.
  • Forbes, M.R.L. (1993) Parasitism and host reproductive effort. Oikos, 67, 444450.
  • Foster, W.A. (1995) Mosquito sugar feeding and reproductive energetics. Annual Review of Entomology, 40, 443474.
  • Gager, A.B., Loaiza, J.D.R., Dearborn, D.C. & Bermingham, E. (2008) Do mosquitoes filter the access of Plasmodium cytochrome b lineages to an avian host? Molecular Ecology, 17, 25522561.
  • Garnham, P.C.C. (1966) Malaria Parasites and Other Haemosporidia. Blackwell Scientific Publications, Oxford.
  • Glaizot, O., Fumagalli, L., Iritano, K., Lalubin, F., van Rooyen, J. & Christe, P. (2012) High prevalence and lineage diversity of avian malaria in wild populations of great tits (Parus major) and mosquitoes (Culex pipiens). PLoS ONE, 7, e34964.
  • Gray, E.M. & Bradley, T.J. (2006) Malarial infection in Aedes aegypti: effects on feeding, fecundity and metabolic rate. Parasitology, 132, 169176.
  • Gu, W., Müller, G., Schlein, Y., Novak, R.J. & Beier, J.C. (2011) Natural plant sugar sources of Anopheles mosquitoes strongly impact malaria transmission potential. PLoS ONE, 6, e15996.
  • Guerenstein, P.G., Lorenzo, M.G., Núñez, J.A. & Lazzari, C.R. (1995) Baker's yeast, an attractant for baiting traps for Chagas’ disease vectors. Experientia, 51, 834837.
  • Harris, C., Lambrechts, L., Rousset, F., Abate, L., Nsango, S.E., Fontenille, D. et al. (2010) Polymorphisms in Anopheles gambiae immune genes associated with natural resistance to Plasmodium falciparum. PLoS Pathogens, 6, e1001112.
  • Harris, C., Morlais, I., Churcher, T.S., Awono-Ambene, P., Gouagna, L.C., Dabire, R.K. et al. (2012) Plasmodium falciparum produce lower infection intensities in local versus foreign Anopheles gambiae populations. PLoS ONE, 7, e30849.
  • Hart, B.L. (1994) Behavioural defense against parasites - Interaction with parasite invasiveness. Parasitology, 109, S139S151.
  • Holt, R.A., Subramanian, G.M., Halpern, A., Sutton, G.G., Charlab, R., Nusskern, D.R. et al. (2002) The genome sequence of the malaria mosquito Anopheles gambiae. Science, 298, 129149.
  • Hume, J.C.C., Tunnicliff, M., Ranford-Cartwright, L.C. & Day, K.P. (2007) Susceptibility of Anopheles gambiae and Anopheles stephensi to tropical isolates of Plasmodium falciparum. Malaria Journal, 6, 139.
  • Hunter, D.J. (2005) Gene–environment interactions in human diseases. Nature Reviews Genetics, 6, 287298.
  • Hurd, H. (2003) Manipulation of medically important insect vectors by their parasites. Annual Review of Entomology, 48, 141161.
  • Hurd, H., Hogg, J.C. & Renshaw, M. (1995) Interactions between bloodfeeding, fecundity and infection in mosquitos. Parasitology Today, 11, 411416.
  • Impoinvil, D.E., Kongere, J.O., Foster, W.A., Njiru, B.N., Killeen, G.F., Githure, J.I. et al. (2004) Feeding and survival of the malaria vector Anopheles gambiae on plants growing in Kenya. Medical and Veterinary Entomology, 18, 108115.
  • Ishtiaq, F., Guillaumot, L., Clegg, S.M., Phillimore, A.B., Black, R.A., Owens, I.P.F. et al. (2008) Avian haematozoan parasites and their associations with mosquitoes across Southwest Pacific Islands. Molecular Ecology, 17, 45454555.
  • Joy, D.A., Gonzalez-Ceron, L., Carlton, J.M., Gueye, A., Fay, M., McCutchan, T.F. et al. (2008) Local adaptation and vector-mediated population structure in Plasmodium vivax malaria. Molecular Biology and Evolution, 25, 12451252.
  • Kim, K.S. & Tsuda, Y. (2012) Avian Plasmodium lineages found in spot surveys of mosquitoes from 2007 to 2010 at Sakata wetland, Japan: do dominant lineages persist for multiple years? Molecular Ecology, 21, 53745385.
  • Kimura, M., Darbro, J.M. & Harrington, L.C. (2010) Avian malaria parasites share congeneric mosquito vectors. Journal of Parasitology, 96, 144151.
  • Kingsolver, J.G. (1987) Mosquito host choice and the epidemiology of malaria. American Naturalist, 130, 811827.
  • Klowden, M.J. (2007) Making generalizations about vectors: is there a physiology of “the mosquito”? Entomological Research, 37, 113.
  • Koella, J.C. (1999) An evolutionary view of the interactions between anopheline mosquitoes and malaria parasites. Microbes and Infection, 1, 303308.
  • Koella, J.C. & Sörensen, F.L. (2002) Effect of adult nutrition on the melanization immune response of the malaria vector Anopheles stephensi. Medical and Veterinary Entomology, 16, 316320.
  • Koella, J.C., Sörensen, F.L. & Anderson, R.A. (1998) The malaria parasite, Plasmodium falciparum, increases the frequency of multiple feeding of its mosquito vector, Anopheles gambiae. Proceedings of the Royal Society of London Series B: Biological Sciences, 265, 763768.
  • Lalubin, F., Bize, P., van Rooyen, J., Christe, P. & Glaizot, O. (2012) Potential evidence of parasite avoidance in an avian malarial vector. Animal Behaviour, 84, 539545.
  • Lalubin, F., Deledevant, A., Glaizot, O. & Christe, P. (2013) Temporal changes in mosquito abundance (Culex pipiens), avian malaria prevalence and lineage composition. Parasites & Vectors, 6, 307.
  • Lambrechts, L., Halbert, J., Durand, P., Gouagna, L.C. & Koella, J.C. (2005) Host genotype by parasite genotype interactions underlying the resistance of anopheline mosquitoes to Plasmodium falciparum. Malaria Journal, 4, 3.
  • Lambrechts, L., Chavatte, J.M., Snounou, G. & Koella, J.C. (2006) Environmental influence on the genetic basis of mosquito resistance to malaria parasites. Proceedings of the Royal Society of London Series B: Biological Sciences, 273, 15011506.
  • Lefèvre, T., Roche, B., Poulin, R., Hurd, H., Renaud, F. & Thomas, F. (2008) Exploiting host compensatory responses: the ‘must’ of manipulation? Trends in Parasitology, 24, 435439.
  • Lefèvre, T., Vantaux, A., Dabirè, K.R., Mouline, K. & Cohuet, A. (2013) Non-genetic determinants of mosquito competence for malaria parasites. PLoS Pathogens, 9, e1003365.
  • Lyimo, E.O. & Koella, J.C. (1992) Relationship between body size of adult Anopheles gambiae s.l and infection with the malaria parasite Plasmodium falciparum. Parasitology, 104, 233237.
  • Mack, S.R., Samuels, S. & Vanderberg, J.P. (1979) Hemolymph of Anopheles stephensi from noninfected and Plasmodium berghei-infected mosquitoes. 3 Carbohydrates. Journal of Parasitology, 65, 217221.
  • Madder, D.J., Surgeoner, G.A. & Helson, B.V. (1983) Number of generations, egg production, and developmental time of Culex pipiens and Culex restuans (Diptera: Culicidae) in Southern Ontario. Journal of Medical Entomology, 20, 275287.
  • Massey, B., Gleeson, D.M., Slaney, D. & Tompkins, D.M. (2007) PCR detection of Plasmodium and blood meal identification in a native New Zealand mosquito. Journal of Vector Ecology, 32, 154156.
  • McCann, S., Day, J.F., Allan, S. & Lord, C.C. (2009) Age modifies the effect of body size on fecundity in Culex quinquefasciatus say (Diptera: Culicidae). Journal of Vector Ecology, 34, 174181.
  • Møller, A.P. (1997) Parasitism and the evolution of host life-history traits. Host-Parasite Evolution: General Principles and Avian Models (eds D.H. Clayton & J. Moore), pp. 105127. Oxford University Press, New York.
  • Moore, J. (2002) Parasites and the Behavior of Animals. Oxford University Press, Oxford.
  • Mpho, M., Holloway, G.J. & Callaghan, A. (2000) Fluctuating wing asymmetry and larval density stress in Culex quinquefasciatus (Diptera: Culicidae). Bulletin of Entomological Research, 90, 279283.
  • Murdock, C.C., Paaijmans, K.P., Cox-Foster, D., Read, A.F. & Thomas, M.B. (2012) Rethinking vector immunology: the role of environmental temperature in shaping resistance. Nature Reviews Microbiology, 10, 869876.
  • Nayar, J.K. & van Handel, E. (1971) The fuel for sustained mosquito flight. Journal of Insect Physiology, 17, 471481.
  • Niaré, O., Markianos, K., Volz, J., Oduol, F., Toure, A., Bagayoko, M. et al. (2002) Genetic loci affecting resistance to human malaria parasites in a West African mosquito vector population. Science, 298, 213216.
  • O'Donnell, D. & Armbruster, P. (2010) Inbreeding depression affects life-history traits but not infection by Plasmodium gallinaceum in the Asian tiger mosquito, Aedes albopictus. Infection, Genetics and Evolution, 10, 669677.
  • Palinauskas, V., Križanauskien≐, A., Iezhova, T.A., Bolshakov, C.V., Jönsson, J., Bensch, S. et al. (2012) A new method for isolation of purified genomic DNA from haemosporidian parasites inhabiting nucleated red blood cells. Experimental Parasitology, 133, 275280.
  • Perrin, N., Christe, P. & Richner, H. (1996) On host life-history response to parasitism. Oikos, 75, 317320.
  • R Development Core Team (2012) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (http://www.R-project.org).
  • Read, A.F., Graham, A.L. & Raberg, L. (2008) Animal defenses against infectious agents: is damage control more important than pathogen control? PLoS Biology, 6, 26382641.
  • Reiter, P. (1986) A standardized procedure for the quantitative surveillance of certain Culex mosquitoes by egg raft collection. Journal of the American Mosquito Control Association, 2, 219221.
  • Restif, O. & Koella, J.C. (2004) Concurrent evolution of resistance and tolerance to pathogens. American Naturalist, 164, E90E102.
  • Rivero, A. & Ferguson, H.M. (2003) The energetic budget of Anopheles stephensi infected with Plasmodium chabaudi: is energy depletion a mechanism for virulence? Proceedings of the Royal Society of London Series B: Biological Sciences, 270, 13651371.
  • Roff, D.A. (1992) The Evolution of Life Histories. Chapman and Hall, New York.
  • de Roode, J.C. & Read, A.F. (2003) Evolution and ecology, after the malaria genomes. Trends in Ecology & Evolution, 18, 6061.
  • van Rooyen, J., Lalubin, F., Glaizot, O. & Christe, P. (2013a) Altitudinal variation in Haemosporidian parasite distribution in great tit populations. Parasites & Vectors, 6, 139.
  • van Rooyen, J., Lalubin, F., Glaizot, O. & Christe, P. (2013b) Avian haemosporidian persistence and co-infection in great tits at the individual level. Malaria Journal, 12, 40.
  • Sadd, B.M. (2011) Food-environment mediates the outcome of specific interactions between a bumblebee and its trypanosome parasite. Evolution, 65, 29953001.
  • Sandland, G.J. & Minchella, D.J. (2003) Costs of immune defense: an enigma wrapped in an environmental cloak? Trends in Parasitology, 19, 571574.
  • Schlein, Y. & Müller, G. (1995) Assessment of plant tissue feeding by sand flies (Diptera: Psychodidae) and mosquitoes (Diptera: Culicidae). Journal of Medical Entomology, 32, 882887.
  • Schmid-Hempel, P. (2011) Evolutionary Parasitology: the Integrated Study of Infections, Immunology, Ecology, and Genetics. Oxford University Press Oxford, New York.
  • Scholthof, K.-B.G. (2007) The disease triangle: pathogens, the environment and society. Nature Reviews Microbiology, 5, 152156.
  • Schwartz, A. & Koella, J.C. (2001) Trade-offs, conflicts of interest and manipulation in Plasmodium-mosquito interactions. Trends in Parasitology, 17, 189194.
  • Schwartz, A. & Koella, J.C. (2004) The cost of immunity in the yellow fever mosquito, Aedes aegypti depends on immune activation. Journal of Evolutionary Biology, 17, 834840.
  • Sheldon, B.C. & Verhulst, S. (1996) Ecological immunology: costly parasite defences and trade-offs in evolutionary ecology. Trends in Ecology & Evolution, 11, 317321.
  • Sinden, R.E. & Billingsley, P.F. (2001) Plasmodium invasion of mosquito cells: hawk or dove? Trends in Parasitology, 17, 209211.
  • Sorci, G., Clobert, J. & Michalakis, Y. (1996) Cost of reproduction and cost of parasitism in the common lizard, Lacerta vivipara. Oikos, 76, 121130.
  • Stearns, S.C. (1992) The Evolution of Life Histories. Oxford University Press, Oxford.
  • Sterling, C.R., Aikawa, M. & Vanderberg, J.P. (1973) The passage of Plasmodium berghei sporozoites through the salivary glands of Anopheles stephensi: an electron microscope study. Journal of Parasitology, 59, 593605.
  • Stone, C. & Foster, W. (2012) Plant-sugar feeding and vectorial capacity. Ecology and Control of Vector-Borne Diseases, vol 3: Ecology of Parasite-Vector Interactions (eds W. Takken & C. Koenraadt). Wageningen Academic Publishers, Wageningen.
  • Stone, C.M., Jackson, B.T. & Foster, W.A. (2012) Effects of plant-community composition on the vectorial capacity and fitness of the malaria mosquito Anopheles gambiae. American Journal of Tropical Medicine and Hygiene, 87, 727736.
  • Suwanchaichinda, C. & Paskewitz, S.M. (1998) Effects of larval nutrition, adult body size, and adult temperature on the ability of Anopheles gambiae (Diptera: Culicidae) to melanize Sephadex beads. Journal of Medical Entomology, 35, 157161.
  • Tripet, F. (2009) Ecological immunology of mosquito-malaria interactions: of non-natural versus natural model systems and their inferences. Parasitology, 136, 19351942.
  • Tripet, F., Aboagye-Antwi, F. & Hurd, H. (2008) Ecological immunology of mosquito-malaria interactions. Trends in Parasitology, 24, 219227.
  • van Uitregt, V.O., Hurst, T.P. & Wilson, R.S. (2012) Reduced size and starvation resistance in adult mosquitoes, Aedes notoscriptus, exposed to predation cues as larvae. Journal of Animal Ecology, 81, 108115.
  • Vale, P.F., Wilson, A.J., Best, A., Boots, M. & Little, T.J. (2011) Epidemiological, evolutionary, and coevolutionary implications of context-dependent parasitism. American Naturalist, 177, 510521.
  • Valkiūnas, G. (2011) Haemosporidian vector research: marriage of molecular and microscopical approaches is essential. Molecular Ecology, 20, 30843086.
  • Valkiūnas, G., Kazlauskien≐, R., Bernotien≐, R., Palinauskas, V. & Iezhova, T.A. (2013) Abortive long-lasting sporogony of two Haemoproteus species (Haemosporida, Haemoproteidae) in the mosquito Ochlerotatus cantans, with perspectives on haemosporidian vector research. Parasitology Research, 112, 21592169.
  • Vaughan, J.A. & Turell, M.J. (1996) Facilitation of Rift Valley fever virus transmission by Plasmodium berghei sporozoites in Anopheles stephensi mosquitoes. American Journal of Tropical Medicine and Hygiene, 55, 407.
  • Ventim, R., Ramos, J.A., Osório, H., Lopes, R.J., Pérez-Tris, J. & Mendes, L. (2012) Avian malaria infections in western European mosquitoes. Parasitology Research, 111, 637645.
  • Vézilier, J., Nicot, A., Gandon, S. & Rivero, A. (2010) Insecticide resistance and malaria transmission: infection rate and oocyst burden in Culex pipiens mosquitoes infected with Plasmodium relictum. Malaria Journal, 9, 379.
  • Vézilier, J., Nicot, A., Gandon, S. & Rivero, A. (2012) Plasmodium infection decreases fecundity and increases survival of mosquitoes. Proceedings of the Royal Society of London Series B: Biological Sciences, 279, 40334041.
  • Vinogradova, E.B. (2000) Mosquitoes Culex pipiens pipiens: Taxonomy, Distribution, Ecology, Physiology, Genetics, Applied Importance and Control. PenSoft, Sofia.
  • Wakelin, D. (1996) Immunology and genetics of zoonotic infections involving parasites. Comparative Immunology Microbiology and Infectious Diseases, 19, 255265.
  • Waldenström, J., Bensch, S., Hasselquist, D. & Ostman, O. (2004) A new nested polymerase chain reaction method very efficient in detecting Plasmodium and Haemoproteus infections from avian blood. Journal of Parasitology, 90, 191194.
  • Ward, R.A. (1963) Genetic aspects of the susceptibility of mosquitoes to malarial infection. Experimental Parasitology, 13, 328341.
  • Wolinska, J. & King, K.C. (2009) Environment can alter selection in host–parasite interactions. Trends in Parasitology, 25, 236244.
  • Zhao, Y.O., Kurscheid, S., Zhang, Y., Liu, L., Zhang, L.L., Loeliger, K. et al. (2012) Enhanced survival of Plasmodium-infected mosquitoes during starvation. PLoS ONE, 7, e40556.
  • Zieler, H. & Dvorak, J.A. (2000) Invasion in vitro of mosquito midgut cells by the malaria parasite proceeds by a conserved mechanism and results in death of the invaded midgut cells. Proceedings of the National Academy of Sciences of the United States of America, 97, 1151611521.