SEARCH

SEARCH BY CITATION

Keywords:

  • agri-environment schemes;
  • agro-ecology;
  • conservation;
  • diversity;
  • land sharing;
  • land sparing;
  • landscape;
  • organic farming;
  • wheat;
  • yield

Summary

  1. A substantial proportion of the global land surface is used for agricultural production. Agricultural land serves multiple societal purposes; it provides food, fuel and fibre and also acts as habitat for organisms and supports the services they provide. Biodiversity conservation and food production need to be balanced: production needs to be sustainable, while conservation cannot be totally at the expense of crop yield.
  2. To identify the benefits (in terms of biodiversity conservation) and costs (in terms of reduction in yields) of agricultural management, we examined the relationship between crop yield and abundance and species density of important taxa in winter cereal fields on both organic and conventional farms in lowland England.
  3. Of eight species groups examined, five (farmland plants, bumblebees, butterflies, solitary bees and epigeal arthropods) were negatively associated with crop yield, but the shape of this relationship varied between taxa. It was linear for the abundance of bumblebees and species density of butterflies, concave up for the abundance of epigeal arthropods and butterflies and concave down for species density of plants and bumblebees.
  4. Grain production per unit area was 54% lower in organic compared with conventional fields. When controlling for yield, diversity of bumblebees, butterflies, hoverflies and epigeal arthropods did not differ between farming systems, indicating that observed differences in biodiversity between organic and conventional fields are explained by lower yields in organic fields and not by different management practices per se. Only percentage cover and species density of plants were increased by organic field management after controlling for yield. The abundance of solitary wild bees and hoverflies was increased in landscapes with high amount of organic land.
  5. Synthesis and applications. Our results indicate that considerable gains in biodiversity require roughly proportionate reductions in yield in highly productive agricultural systems. They suggest that conservation efforts may be more cost effective in low-productivity agricultural systems or on non-agricultural land. In less productive agricultural landscapes, biodiversity benefit can be gained by concentrating organic farms into hotspots without a commensurate reduction in yield.