SEARCH

SEARCH BY CITATION

Summary

Vibrio vulnificus is a potentially lethal human pathogen that occurs naturally in estuarine waters and shellfish. Vibrio vulnificus was quantified in water and oysters from Florida's Gulf Coast by plating on mCPC agar, enrichment and plating, and quantitative PCR (qPCR). Vibrio vulnificus was detected in 19%, 29%, and 97% of samples respectively by direct plating, qPCR, and enrichment. Only 8% of typical colonies from direct plating were confirmed by PCR for vvhA; others yielded no or atypically sized amplicons. Sequencing of the 16S rDNA of 16 vvhA-negative isolates with colony morphology typical of V. vulnificus identified 75% as V. sinaloensis. In vitro growth curves showed that V. sinaloensis grew more rapidly than V. vulnificus in seawater at temperatures ≤ 30°C. In contrast, the growth rate of V. vulnificus in alkaline peptone water was greater than that of V. sinaloensis, suggesting that these species can outcompete one another under conditions that are relevant to environmental parameters or regulatory monitoring regimes respectively. The virulence potential and ecology of V. sinaloensis are poorly understood; however, its phenotypic resemblance to V. vulnificus and the possibility that it could outcompete the pathogen in warm, estuarine waters argue for the need for a better understanding of this newly described Vibrio species.