Random Bernstein Polynomials



Random Bernstein polynomials which are also probability distribution functions on the closed unit interval are studied. The probability law of a Bernstein polynomial so defined provides a novel prior on the space of distribution functions on [0, 1] which has full support and can easily select absolutely continuous distribution functions with a continuous and smooth derivative. In particular, the Bernstein polynomial which approximates a Dirichlet process is studied. This may be of interest in Bayesian non-parametric inference. In the second part of the paper, we study the posterior from a “Bernstein–Dirichlet” prior and suggest a hybrid Monte Carlo approximation of it. The proposed algorithm has some aspects of novelty since the problem under examination has a “changing dimension” parameter space.