• change-point;
  • extreme value asymptotics;
  • first passage time;
  • increments;
  • renewal counting process;
  • sequential tests;
  • stopping time;
  • strong approximation;
  • Wiener process

The typical approach in change-point theory is to perform the statistical analysis based on a sample of fixed size. Alternatively, one observes some random phenomenon sequentially and takes action as soon as one observes some statistically significant deviation from the “normal” behaviour. Based on the, perhaps, more realistic situation that the process can only be partially observed, we consider the counting process related to the original process observed at equidistant time points, after which action is taken or not depending on the number of observations between those time points. In order for the procedure to stop also when everything is in order, we introduce a fixed time horizon n at which we stop declaring “no change” if the observed data did not suggest any action until then. We propose some stopping rules and consider their asymptotics under the null hypothesis as well as under alternatives. The main basis for the proofs are strong invariance principles for renewal processes and extreme value asymptotics for Gaussian processes.