Proportional hazards estimate of the conditional survival function


Ronghui Xu Department of Biostatistics, Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115,


We introduce a new estimator of the conditional survival function given some subset of the covariate values under a proportional hazards regression. The new estimate does not require estimating the base-line cumulative hazard function. An estimate of the variance is given and is easy to compute, involving only those quantities that are routinely calculated in a Cox model analysis. The asymptotic normality of the new estimate is shown by using a central limit theorem for Kaplan–Meier integrals. We indicate the straightforward extension of the estimation procedure under models with multiplicative relative risks, including non-proportional hazards, and to stratified and frailty models. The estimator is applied to a gastric cancer study where it is of interest to predict patients' survival based only on measurements obtained before surgery, the time at which the most important prognostic variable, stage, becomes known.