SEARCH

SEARCH BY CITATION

References

  • 1
    Andersson, S. A., Madigan, D. and Perlman, M. D. (1996) An alternative Markov property for chain graphs. In Proc. 12th Conf. Uncertainty in Artificial Intelligence (eds F. V. Jensen and E. Horvitz), pp. 40–48. San Francisco: Morgan Kaufmann.
  • 2
    — (1997) A characterization of Markov equivalence classes for acyclic digraphs. Ann. Statist., 25, 505541.
  • 3
    — (2001) Alternative Markov properties for chain graphs. Scand. J. Statist., 28, 3385.
  • 4
    Arnold, B., Castillo, E. and Sarabia, J. M. (1999) Conditionally Specified Distributions. New York: Springer.
  • 5
    Bentzel, R. and Hansen, B. (1954) On recursiveness and interdependency in economic models. Rev. Econ. Stud., 22, 153168.
  • 6
    Besag, J. (1974a) Spatial interaction and the statistical analysis of lattice systems (with discussion). J. R. Statist. Soc. B, 36, 302339.
  • 7
    — (1974b) On spatial-temporal models and Markov fields. In Trans. 7th Prague Conf. Information Theory, Statistical Decision Functions and Random Processes, pp. 47–55. Prague: Academia.
  • 8
    — (1975) Statistical analysis of non-lattice data. Statistician, 24, 179195.
  • 9
    Bollen, K. A. (1989) Structural Equations with Latent Variables. New York: Wiley.
  • 10
    Box, G. E. P. (1966) Use and abuse of regression. Technometrics, 8, 625629.
  • 11
    Cooper, G. F. (1995) Causal discovery from data in the presence of selection bias. In Preliminary Pap. 5th Int. Wrkshp AI and Statistics, Jan. 4th–7th, Fort Lauderdale (ed. D. Fisher), pp. 140–150.
  • 12
    Cowell, R. G., Dawid, A. P., Lauritzen, S. L. and Spiegelhalter, D. J. (1999) Probabilistic Networks and Expert Systems. New York: Springer.
  • 13
    Cox, D. R. (1984) Design of experiments and regression. J. R. Statist. Soc. A, 147, 306315.
  • 14
    Cox, D. R. and Wermuth, N. (1993) Linear dependencies represented by chain graphs (with discussion). Statist. Sci., 8, 204218, 247–277.
  • 15
    — (1996) Multivariate Dependencies: Models, Analysis and Interpretation. London: Chapman and Hall.
  • 16
    — (2000) On the generation of the chordless four-cycle. Biometrika, 87, 204212.
  • 17
    Darroch, J. N., Lauritzen, S. L. and Speed, T. P. (1980) Markov fields and log-linear interaction models for contingency tables. Ann. Statist., 8, 522539.
  • 18
    Dawid, A. P. (1979) Conditional independence in statistical theory (with discussion). J. R. Statist. Soc. B, 41, 131.
  • 19
    — (2000) Causal inference without counterfactuals. J. Am. Statist. Ass., 95, 407448.
  • 20
    Edwards, D. and Kreiner, S. (1983) The analysis of contingency tables by graphical models. Biometrika, 70, 553562.
  • 21
    Fisher, F. M. (1970) A correspondence principle for simultaneous equation models. Econometrica, 38, 7392.
  • 22
    Frydenberg, M. (1990) The chain graph Markov property. Scand. J. Statist., 17, 333353.
  • 23
    Geman, S. and Geman, D. (1984) Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. Pattn Anal. Mach. Intell., 6, 721741.
  • 24
    Gibbs, W. (1902) Elementary Principles of Statistical Mechanics. NewHaven: Yale University Press.
  • 25
    Gilks, W. R., Richardson, S. and Spiegelhalter, D. J. (1996) Markov Chain Monte Carlo in Practice. New York: Chapman and Hall.
  • 26
    Goldberger, A. S. (1972) Structural equation models in the social sciences. Econometrica, 40, 9791002.
  • 27
    Grenander, U. and Miller, M. I. (1994) Representations of knowledge in complex systems (with discussion). J. R. Statist. Soc. B, 56, 549603.
  • 28
    Haavelmo, T. (1943) The statistical implications of a system of simultaneous equations. Econometrica, 11, 112.
  • 29
    Hammersley, J. and Clifford, P. (1971) Markov fields on finite graphs and lattices. Unpublished.
  • 30
    Hastings, W. K. (1970) Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57, 97109.
  • 31
    Heckerman, D., Chickering, D. M., Meek, C., Rounthwaite, R. and Kadie, C. (2000) Dependency networks for inference, collaborative filtering, and data visualization. J. Mach. Learn. Res., 1, 4975.
  • 32
    Hofmann, R. (2000) Inference in Markov blanket networks. Technical Report FKI-235-00. Technical University of Munich, Munich.
  • 33
    Hofmann, R. and Tresp, V. (1998) Non-linear Markov networks for continuous variables. In Advances in Neural Information Processing Systems 10 (eds M. I. Jordan, M. J. Kearns and S. A. Solla), pp. 521–527. Cambridge: MIT Press.
  • 34
    Jensen, F. V. (1996) An Introduction to Bayesian Networks. London: University College London Press.
  • 35
    Kiiveri, H. and Speed, T. P. (1982) Structural analysis of multivariate data: a review. In Sociological Methodology (ed. S. Leinhardt). San Francisco: Jossey-Bass.
  • 36
    Kiiveri, H., Speed, T. P. and Carlin, J. B. (1984) Recursive causal models. J. Aust. Math. Soc. A, 36, 3052.
  • 37
    Koster, J. T. A. (1996) Markov properties of non-recursive causal models. Ann. Statist., 24, 21482177.
  • 38
    — (1999) Linear structural equations and graphical models. Lecture Notes. Fields Institute, Toronto.
  • 39
    — (2000) Marginalizing and conditioning in graphical models. Technical Report. Erasmus University, Rotterdam.
  • 40
    Lauritzen, S. L. (1996) Graphical Models. Oxford: Clarendon.
  • 41
    — (1999) Generating mixed hierarchical interaction models by selection. Technical Report R-99-2021. Department of Mathematical Sciences, University of Aalborg, Aalborg.
  • 42
    — (2001) Causal inference from graphical models. In Complex Stochastic Systems (eds O. E. Barndorff-Nielsen, D. R. Cox and C. Klüppelberg), pp. 63–107. Boca Raton: Chapman and Hall–CRC.
  • 43
    Lauritzen, S. L. and Spiegelhalter, D. J. (1988) Local computations with probabilities on graphical structures and their application to expert systems (with discussion). J. R. Statist. Soc. B, 50, 157224.
  • 44
    Lauritzen, S. L. and Wermuth, N. (1984) Mixed interaction models. Technical Report R 84-8. Institute for Electronic Systems, Aalborg University, Aalborg.
  • 45
    — (1989) Graphical models for associations between variables, some of which are qualitative and some quantitative. Ann. Statist., 17, 3157.
  • 46
    Matúš, F. (1999) Conditional independences among four random variables III: Final conclusion. Combin. Probab. Comput., 8, 269276.
  • 47
    Meek, C. (1995) Causal inference and causal explanation with background knowledge. In Proc. 11th Conf. Uncertainty in Artificial Intelligence (eds P. Besnard and S. Hanks), pp. 403–410. San Francisco: Morgan Kaufmann.
  • 48
    Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. and Teller, E. (1953) Equations of state calculations by fast computing machines. J. Chem. Phys., 21, 10871092.
  • 49
    Mohamed, W. N., Diamond, I. and Smith, P. W. F. (1998) The determinants of infant mortality in Malaysia: a graphical chain modelling approach. J. R. Statist. Soc. A, 161, 349366.
  • 50
    Neyman, J. (1923) On the Application of Probability Theory to Agricultural Experiments: Essay on Principles. (in Polish) (Engl. transl. D. Dabrowska and T. P. Speed, Statist. Sci., 5 (1990), 465–480).
  • 51
    Ord, K. (1976) An alternative approach to modelling linear systems. Unpublished.
  • 52
    Pearl, J. (1988) Probabilistic Inference in Intelligent Systems. San Mateo: Morgan Kaufmann.
  • 53
    — (1993) Graphical models, causality and intervention. Statist. Sci., 8, 266269.
  • 54
    — (1995) Causal diagrams for empirical research. Biometrika, 82, 669710.
  • 55
    — (1998) Graphs, causality, and structural equation models. Sociol. Meth. Res., 27, 226284.
  • 56
    — (2000) Causality: Models, Reasoning, and Inference. Cambridge: Cambridge University Press.
  • 57
    Preston, C. J. (1973) Generalised Gibbs states and Markov random fields. Adv. Appl. Probab., 5, 242261.
  • 58
    Richardson, T. S. (1996) Models of feedback: interpretation and discovery. PhD Thesis. Carnegie-Mellon University, Pittsburgh.
  • 59
    — (1998) Chain graphs and symmetric associations. In Learning in Graphical Models (ed. M. Jordan), pp. 231–260. Dordrecht: Kluwer.
  • 60
    — (2001) Chain graphs which are maximal ancestral graphs are recursive causal graphs. Technical Report 387. Department of Statistics, University of Washington, Seattle.
  • 61
    Richardson, T. S. and Spirtes, P. (2000) Ancestral graph Markov models. Technical Report 375. Department of Statistics, University of Washington, Seattle.
  • 62
    Ripley, B. (1981) Spatial Statistics. New York: Wiley.
  • 63
    Roberts, G. O. and Tweedie, R. L. (1996) Exponential convergence of Langevin distributions and their discrete approximation. Bernoulli, 2, 341364.
  • 64
    Robins, J. M. (1986) A new approach to causal inference in mortality studies with sustained exposure periods— application to control of the healthy worker survivor effect. Math. Modllng, 7, 13931512.
  • 65
    Rubin, D. B. (1974) Estimating causal effects of treatments in randomized and non-randomized studies. J. Educ. Psychol., 66, 688701.
  • 66
    Speed, T. P. (1979) A note on nearest-neighbour Gibbs and Markov distributions over graphs. Sankhya A, 41, 184197.
  • 67
    Spiegelhalter, D. J., Dawid, A. P., Lauritzen, S. L. and Cowell, R. G. (1993) Bayesian analysis in expert systems (with discussion). Statist. Sci., 8, 219283.
  • 68
    Spirtes, P. (1995) Directed cyclic graphical representations of feedback models. In Proc. 11th Conf. Uncertainty in Artificial Intelligence (eds P. Besnard and S. Hanks), pp. 491–498. San Francisco: Morgan Kaufmann.
  • 69
    Spirtes, P., Glymour, C. and Scheines, R. (1993) Causation, Prediction and Search. New York: Springer.
  • 70
    Spirtes, P., Meek, C. and Richardson, T. S. (1995) Causal inference in the presence of latent variables and selection bias. In Proc. 11th Conf. Uncertainty in Artificial Intelligence (eds P. Besnard and S. Hanks), pp. 403–410. San Francisco: Morgan Kaufmann.
  • 71
    Spirtes, P. and Richardson, T. S. (1997) A polynomial-time algorithm for determining DAG equivalence in the presence of latent variables and selection bias. In Preliminary Pap. 6th Int. Wrkshp AI and Statistics, Jan. 4th–7th, Fort Lauderdale (eds D. Madigan and P. Smyth), pp. 489–501.
  • 72
    Spirtes, P., Richardson, T. S., Meek, C., Scheines, R. and Glymour, C. (1998) Using path diagrams as a structural equation modeling tool. Sociol. Meth. Res., 27, 182225.
  • 73
    Spitzer, F. (1971) Random Fields and Interacting Particle Systems. Washington DC: Mathematical Association of America.
  • 74
    Strotz, R. H. and Wold, H. O. A. (1960) Recursive versus nonrecursive systems: an attempt at synthesis. Econometrica, 28, 417427.
  • 75
    Studený, M. and Bouckaert, R. R. (1998) On chain graph models for description of independence structures. Ann. Statist., 26, 14341495.
  • 76
    Verma, T. and Pearl, J. (1990) Equivalence and synthesis of causal models. In Proc. 6th Conf. Uncertainty in Artificial Intelligence (eds P. Bonissone, M. Henrion, L. N. Kanal and J. F. Lemmer), pp. 255–270. Amsterdam: North-Holland.
  • 77
    Wermuth, N. (1992) Block-recursive regression equations (with discussion). Rev. Bras. Probab. Estatist., 6, 156.
  • 78
    Wermuth, N., Cox, D. and Pearl, J. (1994) Explanations for multivariate structures derived from univariate recursive regressions. Technical Report 94-1. University of Mainz, Mainz.
  • 79
    — (1999) Explanations for multivariate structures derived from univariate recursive regressions. Technical Report. University of Mainz, Mainz.
  • 80
    Wermuth, N. and Lauritzen, S. L. (1990) On substantive research hypotheses, conditional independence graphs and graphical chain models (with discussion). J. R. Statist. Soc. B, 52, 2172.
  • 81
    Whittaker, J. (1990) Graphical Models in Applied Multivariate Statistics. Chichester: Wiley.
  • 82
    Wold, H. O. A. (1953) Demand Analysis. New York: Wiley.
  • 83
    — (1954) Causality and econometrics. Econometrica, 22, 162177.
  • 84
    Wright, S. (1921) Correlation and causation. J. Agric. Res., 20, 557585.

References

  • 85
    Anderson, S. L. and Cox, D. R. (1950) The relation between the strength and diameter of wool fibres. J. Text. Inst., 41, T481T491.
  • 86
    Andersson, S. A., Madigan, D. and Perlman, M. D. (1996) An alternative Markov property for chain graphs. In Proc. 12th Conf. Uncertainty in Artificial Intelligence (eds F. Jensen and E. Horvitz), pp. 40–48. San Francisco: Morgan Kaufmann.
  • 87
    —(1997) A characterization of Markov equivalence classes for acyclic digraphs. Ann. Statist., 25, 505541.
  • 88
    —(2001) Alternative Markov properties for chain graphs. Scand. J. Statist., 28, 3385.
  • 89
    Andersson, S. A. and Madsen, J. (1998) Symmetry and lattice conditional independence in a multivariate normal distribution. Ann. Statist., 26, 525572.
  • 90
    Angrist, J. D. and Krueger, A. B. (2000) Empirical strategies in labor economics. In Handbook of Labor Economics, vol. III, ch. 23. New York: Elsevier.
  • 91
    Besag, J. (2002) Likelihood analysis of binary data in space and time. In Highly Structured Stochastic Systems (eds P. J. Green, N. L. Hjort and S. Richardson). Oxford: Oxford University Press. To be published.
  • 92
    Cowell, R. G., Dawid, A. P., Lauritzen, S. and Spiegelhalter, D. J. (1999) Probabilistic Networks and Expert Systems. New York: Springer.
  • 93
    Cox, D. R. (1984) Design of experiments and regression (with discussion). J. R. Statist. Soc. A, 147, 306315.
  • 94
    Cox, D. R. and Reid, N. (2000) The Theory of the Design of Experiments. New York: CRC Press.
  • 95
    Cox, D. R. and Wermuth, N. (1993) Linear dependencies represented by chain graphs (with discussion). Statist. Sci., 8, 204218, 247–277.
  • 96
    —(1996) Multivariate Dependencies: Models, Analysis, and Interpretation. London: Chapman and Hall.
  • 97
    Dawid, A. P. (2002a) Influence diagrams for causal modelling and inference. Int. Statist. Rev., to be published.
  • 98
    —(2002b) Causal inference using influence diagrams: the problems of partial compliance (with discussion). In Highly Structured Stochastic Systems (eds A. Frigessi and S. Richardson). Oxford: Oxford University Press. To be published.
  • 99
    Dempster, A. P. (1972) Covariance selection. Biometrics, 28, 157175.
  • 100
    Fader, P. S. and Hardie, B. G. S. (1996) Modeling consumer choice among SKU's. J. Marktng Res., 33, 442452.
  • 101
    Fisher, R. A. (1935) The Design of Experiments. Edinburgh: Oliver and Boyd.
  • 102
    Friedman, M. (1968) Theory and analysis of consumption and savings functions. In Economic Statistics and Econ- ometrics (ed. A. Zellner), pp. 236–253. Boston: Little, Brown.
  • 103
    Frydenberg, F. M. (1990) The chain graph Markov property. Scand. J. Statist., 17, 333353.
  • 104
    Gross, D. B. and Souleles, N. S. (2002) Do liquidity constraints and interest rates matter for consumer behavior?: evidence from credit card data. Q. J. Econ., 117, 149186.
  • 105
    Hobert, J. P. and Casella, G. (1996) The effect of improper priors on Gibbs sampling in hierarchical linear models. J. Am. Statist. Ass., 91, 14611473.
  • 106
    Horvath, S. and Laird, N. M. (1998) A discordant-sibship test for disequilibrium and linkage: no need for parental data. Am. J. Hum. Genet., 63, 18861897.
  • 107
    Koster, J. T. A. (1996) Markov properties of non-recursive causal models. Ann. Statist., 24, 21482177.
  • 108
    —(2000) Marginalizing and conditioning in graphical models. Technical Report EUR/FSW-Soc/2000.02. Erasmus University, Rotterdam.
  • 109
    Laird, N. M., Blacker, D. and Wilcox, M. (1998) The sib transmission/disequilibrium test is a Mantel-Haenszel test. Am. J. Hum. Genet., 63, 19151915.
  • 110
    Lauritzen, S. L. (1996) Graphical Models. Oxford: Clarendon.
  • 111
    —(2000) Causal inference from graphical models. In Complex Stochastic Systems (eds O. E. Barndorff-Nielsen, D. R. Cox and C. Klüppelberg), ch. 2, pp. 63–107. Boca Raton: CRC Press.
  • 112
    Lauritzen, S. L. and Wermuth, N. (1989) Graphical models for associations between variables, some of which are qualitative and some quantitative. Ann. Statist., 17, 3157.
  • 113
    Lindley, D. V. (1983) Parametric empirical Bayes inference: comment. J. Am. Statist. Ass., 78, 6162.
  • 114
    Madsen, J. (2000) Invariant normal models with recursive graphical Markov structure. Ann. Statist., 28, 11501178.
  • 115
    Mantel, N. (1963) Chi-square tests with one degree of freedom: extensions of the Mantel–Haenszel procedure. J. Am. Statist. Ass., 58, 690700.
  • 116
    Meyer, B. D. (1995) Natural and quasi-experiments in economics. J. Bus. Econ. Statist., 13, 151161.
  • 117
    Paz, A., Geva, R. Y. and Studený, M. (2000) Representation of irrelevance relations by annotated graphs. Fund. Inform., 42, 149199.
  • 118
    Pearl, J. (2000) Causality. Cambridge, Cambridge University Press.
  • 119
    Piantadosi, S. (1997) Clinical Trials: a Methodologic Perspective. New York: Wiley.
  • 120
    Risch, N. and Merikangas, K. (1996) The future of genetic studies of complex human diseases. Science, 273, 15161517.
  • 121
    Rosenbaum, P. R. (1999) Choice as alternative to control in observational studies (with discussion). Statist. Sci., 14, 259304.
  • 122
    —(2002) Observational Studies, 2nd edn. New York: Springer.
  • 123
    Rosenberg, M. (1968) The Logic of Survey Research. New York. Basic Books.
  • 124
    Rosenzweig, M. R. and Wolpin, K. I. (2000) Natural “natural experiments” in economics. J. Econ. Lit., 38, 827874.
  • 125
    Shadish, W. R., Cook, T. D. and Campbell, D. T. (2002) Experimental and Quasi-experimental Designs for Generalized Causal Inference. Boston: Houghton-Mifflin.
  • 126
    Spielman, R. S. and Ewens, W. J. (1998) A sibship test for linkage in the presence of association: the sib transmission/disequilibrium test. Am. J. Hum. Genet., 62, 450458.
  • 127
    Spirtes, P., Glymour, C. and Scheines, R. (1993) Causation, Prediction and Search. New York: Springer.
  • 128
    Studený, M. (1998) Bayesian networks from the point of view of chain graphs. In Proc. 14th Conf. Uncertainty in Artificial Intelligence (eds G. F. Cooper and S. Moral), pp. 496–503. San Francisco: Morgan Kaufmann.
  • 129
    Whittaker, J. (1990) Graphical Models in Applied Multivariate Statistics. Chichester: Wiley.