SEARCH

SEARCH BY CITATION

References

  • Akaike, H. (1973) Information theory and an extension of the maximum likelihood principle. In Proc. 2nd Int. Symp. Information Theory (eds B. N.Petrov and F.Csáki ), pp. 267281. Budapest: Akadémiai Kiadó.
  • Andrews, D. F. and Mallows, C. L. (1974) Scale mixtures of normal distributions. J. R. Statist. Soc. B, 36, 99102.
  • Berk, R. H. (1966) Limiting behaviour of posterior distributions when the model is incorrect. Ann. Math. Statist., 37, 5158.
  • Bernardo, J. M. (1979) Expected information as expected utility. Ann. Statist., 7, 686690.
  • Bernardo, J. M. and Smith, A. F. M. (1994) Bayesian Theory. Chichester: Wiley.
  • Besag, J. (1974) Spatial interaction and the statistical analysis of lattice systems (with discussion). J. R. Statist. Soc. B, 36, 192236.
  • Biller, C. and Fahrmeir, L. (2001) Bayesian varying-coefficient modelsusing adaptive regression splines. Statist. Modlng, 1, 195211.
  • Box, G. E. P. (1976) Science and statistics. J. Am. Statist. Ass., 71, 791799.
  • Breslow, N. E. and Clayton, D. G. (1993) Approximate inference in generalized linear mixed models. J. Am. Statist. Ass., 88, 925.
  • Brownlee, K. A. (1965) Statistical Theory and Methodology in Science and Engineering. New York: Wiley.
  • Bunke, O. and Milhaud, X. (1998) Asymptotic behaviour of Bayes estimates under possibly incorrect models. Ann. Statist., 26, 617644.
  • Burnham, K. P. and Anderson, D. R. (1998) Model Selection and Inference. New York: Springer.
  • Carlin, B. P. and Louis, T. A. (2000) Bayes and Empirical Bayes Methods for Data Analysis, 2nd edn. Boca Raton: Chapman and Hall–CRC Press.
  • Chib, S. and Greenberg, E. (1998) Analysis of multivariate probit models. Biometrika, 85, 347361.
  • Clayton, D. G. and Kaldor, J. (1987) Empirical Bayes estimates of age-standardised relative risks for use in disease mapping. Biometrics, 43, 671681.
  • Dempster, A. P. (1974) The direct use of likelihood for significance testing. In Proc. Conf. Foundational Questions in Statistical Inference (eds O.Barndorff-Nielsen, P.Blaesild and G.Schou), pp. 335352. Aarhus: University of Aarhus.
  • (1997a) The direct use of likelihood for significance testing. Statist. Comput., 7, 247252.
  • (1997b) Commentary on the paper by Murray Aitkin, and on discussion by Mervyn Stone. Statist. Comput., 7, 265269.
  • Efron, B. (1986) How biased is the apparent error rate of a prediction rule? J. Am. Statist. Ass., 81, 461470.
  • Erkanli, A., Soyer, R. and Angold, A. (2001) Bayesian analyses of longitudinal binary data using markov regression models of unknown order. Statist. Med., 20, 755770.
  • Erkanli, A., Soyer, R. and Costello, E. (1999) Bayesian inference for prevalence in longitudinal two-phase studies. Biometrics, 55, 11451150.
  • Eubank, R. L. (1985) Diagnostics for smoothing splines. J. R. Statist. Soc. B, 47, 332341.
  • Eubank, R. and Gunst, R. (1986) Diagnostics for penalized least-squares estimators. Statist. Probab. Lett., 4, 265272.
  • Fitzmaurice, G. and Laird, N. (1993) A likelihood-based method for analysing longitudinal binary responses. Biometrika, 80, 141151.
  • Gelfand, A. E. and Dey, D. K. (1994) Bayesian model choice: asymptotics and exact calculations. J. R. Statist. Soc. B, 56, 501514.
  • Gelfand, A. E., Ecker, M. D., Christiansen, C., McLaughlin, T. J. and Soumerai, S. B. (2000) Conditional categorical response models with application to treatment of acute myocardial infarction. Appl. Statist., 49, 171186.
  • Gelfand, A. and Ghosh, S. (1998) Model choice: a minimum posterior predictive loss approach. Biometrika, 85, 111.
  • Gelfand, A. E. and Trevisani, M. (2002) Inequalities between expected marginal log likelihoods with implications for likelihood-based model comparison. Technical Report. Department of Statistics, University of Connecticut, Storrs.
  • Gilks, W. R., Richardson, S. and Spiegelhalter, D. J. (eds) (1996) Markov Chain Monte Carlo in Practice. New York: Chapman and Hall.
  • Gilks, W. R., Wang, C. C., Coursaget, P. and Yvonnet, B. (1993) Random-effects models for longitudinal data using Gibbs sampling. Biometrics, 49, 441453.
  • Good, I. J. (1956) The surprise index for the multivariate normal distribution. Ann. Math. Statist., 27, 11301135.
  • Green, P. and Richardson, S. (2002) Hidden Markov models and disease mapping. J. Am. Statist. Ass., to be published.
  • Han, C. and Carlin, B. (2001) MCMC methods for computing Bayes factors: a comparative review. J. Am. Statist. Ass., 96, 11221132.
  • Hastie, T. and Tibshirani, R. (1990) Generalized Additive Models. London: Chapman and Hall.
  • Hodges, J. and Sargent, D. (2001) Counting degrees of freedom in hierarchical and other richly-parameterised models. Biometrika, 88, 367379.
  • Huber, P. J. (1967) The behaviour of maximum likelihood estimates under non-standard conditions. In Proc. 5th Berkeley Symp. Mathematical Statistics and Probability (eds L. M.LeCam and J.Neyman), vol. 1, pp. 221233. Berkeley: University of California Press.
  • Kass, R. and Raftery, A. (1995) Bayes factors and model uncertainty. J. Am. Statist. Ass., 90, 773795.
  • Key, J. T., Pericchi, L. R. and Smith, A. F. M. (1999) Bayesian model choice: what and why? In Bayesian Statistics 6 (eds J. M.Bernardo, J. O.Berger, A. P.Dawid and A. F. M.Smith ), pp. 343370. Oxford: Oxford University Press.
  • Kimeldorf, G. and Wahba, G. (1970) A correspondence between Bayesian estimation on stochastic processes and smoothing by splines. Ann. Math. Statist., 41, 495502.
  • Kullback, S. and Leibler, R. A. (1951) On information and sufficiency. Ann. Math. Statist., 22, 7986.
  • Laird, N. M. and Ware, J. H. (1982) Random effects models for longitudinal data. Biometrics, 38, 963974.
  • Laud, P. W. and Ibrahim, J. G. (1995) Predictive model selection. J. R. Statist. Soc. B, 57, 247262.
  • Lee, Y. and Nelder, J. A. (1996) Hierarchical generalized linear models (with discussion). J. R. Statist. Soc. B, 58, 619678.
  • van der Linde, A. (1995) Splines from a Bayesian point of view. Test, 4, 6381.
  • (2000) Reference priors for shrinkage and smoothing parameters. J. Statist. Planng Inf., 90, 245274.
  • Lindley, D. V. and Smith, A. F. M. (1972) Bayes estimates for the linear model (with discussion). J. R. Statist. Soc. B, 34, 144.
  • MacKay, D. J. C. (1992) Bayesian interpolation. Neur. Computn, 4, 415447.
  • (1995) Probable networks and plausible predictions—a review of practical Bayesian methods for supervised neural networks. Netwrk Computn Neur. Syst., 6, 469505.
  • McCullagh, P. and Nelder, J. (1989) Generalized Linear Models, 2nd edn. London: Chapman and Hall.
  • Meng, X.-L. and Rubin, D. B. (1992) Performing likelihood ratio tests with multiply imputed data sets. Biometrika, 79, 103112.
  • Moody, J. E. (1992) The effective number of parameters: an analysis of generalization and regularization in nonlinear learning systems. In Advances in Neural Information Processing Systems 4 (eds J. E.Moody, S. J.Hanson and R. P.Lippmann ), pp. 847854. San Mateo: Morgan Kaufmann.
  • Murata, N., Yoshizawa, S. and Amari, S. (1994) Network information criterion—determining the number of hidden units for artificial neural network models. IEEE Trans. Neur. Netwrks, 5, 865872.
  • Natarajan, R. and Kass, R. E. (2000) Reference Bayesian methods for generalised linear mixed models. J. Am. Statist. Ass., 95, 227237.
  • Raghunathan, T. E. (1988) A Bayesian model selection criterion. Technical Report. University of Washington, Seattle.
  • Rahman, N. J., Wakefield, J. C., Stephens, D. A. and Falcoz, C. (1999) The Bayesian analysis of a pivotal pharmacokinetic study. Statist. Meth. Med. Res., 8, 195216.
  • Richardson, S. and Green, P. J. (1997) On Bayesian analysis of mixtures with an unknown number of components (with discussion). J. R. Statist. Soc. B, 59, 731792.
  • Ripley, B. D. (1996) Pattern Recognition and Neural Networks. Cambridge: Cambridge University Press.
  • Sawa, T. (1978) Information criteria for choice of regression models: a comment. Econometrica, 46, 12731291.
  • Schwarz, G. (1978) Estimating the dimension of a model. Ann. Statist., 6, 461466.
  • Slate, E. (1994) Parameterizations for natural exponential-families with quadratic variance functions. J. Am. Statist. Ass., 89, 14711482.
  • Spiegelhalter, D. J., Thomas, A. and Best, N. G. (2000) WinBUGS Version 1.3 User Manual. Cambridge: Medical Research Council Biostatistics Unit. (Available from http://www.mrcbsu.cam.ac.uk/bugs.)
  • Spiegelhalter, D. J., Thomas, A., Best, N. G. and Gilks, W. R. (1996) BUGS Examples Volume 1, Version 0.5 (Version ii). Cambridge: Medical Research Council Biostatistics Unit.
  • Stone, M. (1977) An asymptotic equivalence of choice of model by cross-validation and Akaike's criterion. J. R. Statist. Soc. B, 39, 4447.
  • Takeuchi, K. (1976) Distribution of informational statistics and a criterion for model fitting (in Japanese). Suri-Kagaku, 153, 1218.
  • Vehtari, A. and Lampinen, J. (1999) Bayesian neural networks with correlated residuals. In IJCNN’99: Proc. 1999. Int. Joint Conf. Neural Networks. New York: Institute of Electrical and Electronic Engineers.
  • Wahba, G. (1978) Improper priors, spline smoothing and the problem of guarding against model errors in regressions. J. R. Statist. Soc. B, 40, 364372.
  • (1983) Bayesian ‘‘confidence intervals’’ for the cross-validated smoothing spline. J. R. Statist. Soc. B, 45, 133150.
  • (1990) Spline Models for Observational Data. Philadelphia: Society for Industrial and Applied Mathematics.
  • Ye, J. (1998) On measuring and correcting the effects of data mining and model selection. J. Am. Statist. Ass., 93, 120131.
  • Ye, J. and Wong, W. (1998) Evaluation of highly complex modeling procedures with binomial and Poisson data. Technical Report. Graduate School of Business, University of Chicago, Chicago.
  • Zeger, S. L. and Karim, M. R. (1991) Generalised linear models with random effects; a Gibbs sampling approach. J. Am. Statist. Ass., 86, 7986.
  • Zhu, L. and Carlin, B. (2000) Comparing hierarchical models for spatio-temporally misaligned data using the deviance information criterion. Statist. Med., 19, 22652278.

References in the discussion

  • Aitkin, M. (1991) Posterior Bayes factors (with discussion). J. R. Statist. Soc. B, 53, 111142.
  • Akaike, H. (1973) Information theory and an extension of the maximum likelihood principle. In Proc. 2nd Int. Symp. Information Theory (eds B. N.Petrov and F.Csáki), pp. 267281. Budapest: Akadémiai Kiadó.
  • Atkinson, A. C. (1980) A note on the generalized information criterion for choice of a model. Biometrika, 67, 413418.
  • Atkinson, A. C. and Riani, M. (2000) Robust Diagnostic Regression Analysis. New York: Springer.
  • — (2002) Forward search added variable t tests and the effect of masked outliers on model selection and transformation. Technical Report LSERR73. London School of Economics and Political Science, London.
  • Bernardo, J. M. (1979) Expected information as expected utility. Ann. Statist., 7, 686690.
  • — (1999) Nested hypothesis testing: the Bayesian reference criterion (with discussion). In Bayesian Statistics 6 (eds J. M.Bernardo, J. O.Berger, A. P.Dawid and A. F. M.Smith), pp. 101130. Oxford: Oxford University Press.
  • Bernardo, J. M. and Smith, A. F. M. (1994) Bayesian Theory. New York: Wiley.
  • Bernardo, J. M. and Suarez, M. (2002) Intrinsic estimation. 7th Valencia Int. Meet. Bayesian Statistics, Tenerife, June.
  • Burnham, K. P. and Anderson, D. R. (1998) Model Selection and Inference: a Practical Information-theoretic Approach. New York: Springer.
  • — (2002) Model Selection and Multimodel Inference: a Practical Information-theoretical Approach, 2nd edn. New York: Springer.
  • Casella, G., Robert, C. P. and Wells, M. T. (2000) Mixture models, latent variables and partitioned importance sampling. Technical Report . Paris.
  • Celeux, G., Hurn, M. and Robert, C. P. (2000) Computational and inferential difficulties with mixtures posterior distribution. J. Am. Statist. Ass., 95, 957979.
  • Cooke, R. M. (1991) Experts in Uncertainty. Oxford: Oxford University Press.
  • Cowell, R. G., Dawid, A. P., Lauritzen, S. L. and Spiegelhalter, D. J. (1999) Probabilistic Networks and Expert Systems. New York: Springer.
  • Daniels, M. J. and Kass, R. E. (1999) Nonconjugate Bayesian estimation of covariance matrices and its use in hierarchical models. J. Am. Statist. Ass., 94, 12541263.
  • — (2001) Shrinkage estimators for covariance matrices. Biometrics, 57, 11731184.
  • Dawid, A. P. (1984) Statistical theory: the prequential approach. J. R. Statist. Soc. A, 147, 278292.
  • — (1986) Probability forecasting. In Encyclopedia of Statistical Sciences, vol. 7 (eds S.Kotz, N. L.Johnson and C. B.Read), pp. 210218. New York: Wiley-Interscience.
  • — (1991) Fisherian inference in likelihood and prequential frames of reference (with discussion). J. R. Statist. Soc. B, 53, 79109.
  • — (1992a) Prequential analysis, stochastic complexity and Bayesian inference (with discussion). In Bayesian Statistics 4 (eds J. M.Bernardo, J. O.Berger, A. P.Dawid and A. F. M.Smith), pp. 109125. Oxford: Oxford University Press.
  • — (1992b) Prequential data analysis. In Current Issues in Statistical Inference: Essays in Honor of D. Basu (eds M.Ghosh and P. K.Pathak), pp. 113126. Hayward: Institute of Mathematical Statistics.
  • Draper, D. (1999) Discussion on ‘Decision models in screening for breast cancer’ (by G. Parmigiani). In Bayesian Statistics 6 (eds J. M.Bernardo, J. O.Berger, A. P.Dawid and A. F. M.Smith), pp. 541543. Oxford: Oxford University Press.
  • Draper, D. and Fouskakis, D. (2000) A case study of stochastic optimization in health policy: problem formulation and preliminary results. J. Global Optimzn, 18, 399416.
  • Dupuis, J. and Robert, C. P. (2002) Model choice in qualitative regression models. J. Statist. Planng Inf., to be published.
  • Efron, B. (1986) How biased is the apparent error rate of a prediction rule? J. Am. Statist. Ass., 81, 461470.
  • Fouskakis, D. and Draper, D. (2002) Stochastic optimization: a review. Int. Statist. Rev.,to be published.
  • Gangnon, R. and Clayton, M. (2002) Cluster modelling for disease rate mapping. In Spatial Cluster Modelling (eds A. B.Lawson and D.Denison), ch. 8. New York: CRC Press.
  • Gelfand, A. E. (1996) Model determination using sampling-based methods. In Markov Chain Monte Carlo in Practice (eds W. R.Gilks, S.Richardson and D. J.Spiegelhalter), pp. 145162. London: Chapman and Hall.
  • Gelfand, A. E., Dey, D. K. and Chang, H. (1992) Model determination using predictive distributions with implementation via sampling-based methods (with discussion). In Bayesian Statistics 4 (eds J. M.Bernardo, J. O.Berger, A. P.Dawid and A. F. M.Smith), pp. 147167. Oxford: Oxford University Press.
  • Gelman, A., Meng, X.-L. and Stern, H. (1996) Posterior predictive assessment of model fitness via realized discrepancies (with discussion). Statist. Sin., 6, 733807.
  • Good, I. J. (1952) Rational decisions. J. R. Statist. Soc. B, 14, 107114.
  • Green, P. and Richardson, S. (2002) Hidden Markov models and disease mapping. J. Am. Statist. Ass., to be published.
  • Hodges, J. and Sargent, D. (2001) Counting degrees of freedom in hierarchical and other richly-parameterised models. Biometrika, 88, 367379.
  • Holmes, C. and Denison, D. (1999) Bayesian wavelet analysis with a model complexity prior. In Bayesian Statistics 6 (eds J. M.Bernardo, J. O.Berger, A. P.Dawid and A. F. M.Smith), pp. 769776. Oxford: Oxford University Press.
  • Kass, R. and Raftery, A. (1995) Bayes factors and model uncertainty. J. Am. Statist. Ass., 90, 773795.
  • Key, J. T., Pericchi, L. R. and Smith, A. F. M. (1999) Bayesian model choice: what and why? In Bayesian Statistics 6 (eds J. M.Bernardo, J. O.Berger, A. P.Dawid and A. F. M.Smith), pp. 343370. Oxford: Oxford University Press.
  • King, R. (2001) Bayesian model discrimination in the analysis of capture-recapture and related data. PhD Thesis . School of Mathematics, University of Bristol, Bristol.
  • King, R. and Brooks, S. P. (2001) Bayesian estimation of census undercount. Biometrika, 88, 317336.
  • Konishi, S. and Kitagawa, G. (1996) Generalised information criteria in model selection. Biometrika, 83, 875890.
  • Lauritzen, S. L. and Spiegelhalter, D. J. (1988) Local computations with probabilities on graphical structures and their application to expert systems (with discussion). J. R. Statist. Soc. B, 50, 157224.
  • Lawson, A. B. (2000) Cluster modelling of disease incidence via rjmcmc methods: a comparative evaluation. Statist. Med., 19, 23612376.
  • Lee, Y. and Nelder, J. A. (1996) Hierarchical generalized linear models (with discussion). J. R. Statist. Soc. B, 58, 619678.
  • — (2001a) Hierarchical generalized linear models: a synthesis of generalized linear models, random effect models and structured dispersions. Biometrika, 88, 9871006.
  • — (2001b) Modelling and analysing correlated non-normal data. Statist. Modlng, 1, 316.
  • deLuna, X. and Skouras, K. (2003) Choosing a model selection strategy. Scand. J. Statist., to be published.
  • Madigan, D. and Raftery, A. E. (1991) Model selection and accounting for model uncertainty in graphical models using Occam's window. Technical Report 213 . Department of Statistics, University of Washington, Seattle.
  • McKeague, I. and Loiseaux, M. (2002) Perfect sampling for point process cluster modelling. In Spatial Cluster Modelling (eds A. B.Lawson and D.Denison), ch. 5. New York: CRC Press.
  • Meng, X.-L. and Rubin, D. B. (1992) Performing likelihood ratio tests with multiply imputed data sets. Biometrika, 79, 103112.
  • Moreno, E., Pericchi, L. R. and Kadane, J. (1998) A robust Bayesian look at the theory of precise measurement. In Decision Research from Bayesian Approaches to Normative Systems (eds J.Shantan et al .). Boston: Kluwer.
  • Neter, J., Kutner, M. H., Nachtsheim, C. J. and Wasserman, W. (1996) Applied Linear Statistical Models, 4th edn. New York: McGraw-Hill.
  • Pericchi, L. R. and Walley, P. (1991) Robust Bayesian credible intervals and prior ignorance. Int. Statist. Rev., 58, 123.
  • Plummer, M. (2002) Some criteria for Bayesian model choice. Preprint . (Available from http://calvin.iarc.fr/martyn/papers/.)
  • Priestley, M. B. (1981) Spectral Analysis and Time Series. London: Academic Press.
  • Robert, C. P. (1996) Intrinsic loss functions. Theory Decsn, 40, 191214.
  • Shao, J. (1997) An asymptotic theory for linear model selection. Statist. Sin., 7, 221264.
  • Skouras, K. and Dawid, A. P. (1999) On efficient probability forecasting systems. Biometrika, 86, 765784.
  • — (2000) Consistency in misspecified models. Research Report 218. Department of Statistical Science, University College London, London. (Available from: http://www.ucl.ac.uk/Stats/research/abs00.html218.)
  • Smith, J. Q. (1996) Plausible Bayesian games. In Bayesian Statistics 5 (eds J. M.Bernardo, J. O.Berger, A. P.Dawid and A. F. M.Smith), pp. 387406. Oxford: Oxford University Press.
  • Stone, M. (1974) Cross-validatory choice and assessment of statistical predictions (with discussion). J. R. Statist. Soc. B, 36, 111147.
  • — (1977) An asymptotic equivalence of choice of model by cross-validation and Akaike's criterion. J. R. Statist. Soc. B, 36, 4447.
  • Vehtari, A. (2001) Bayesian model assessment and selection using expected utilities. DSc Dissertation. Helsinki University of Technology, Helsinki. (Available from http://lib.hut.fi/Diss/2001/isbn9512257653/.)
  • Vehtari, A. and Lampinen, J. (2002a) Bayesian model assessment and comparison using cross-validation predictive densities. Neur. Computn, 14, in the press.
  • — (2002b) Cross-validation, information criteria, expected utilities and the effective number of parameters. To be published.
  • Volinsky, C. T. and Raftery, A. E. (2000) Bayesian information criterion for censored survival models. Biometrics, 56, 256262.
  • Weisberg, S. (1981) A statistic for allocating Cp to individual cases. Technometrics, 23, 2731.
  • Ye, J. (1998) On measuring and correcting the effects of data mining and model selection. J. Am. Statist. Ass., 93, 120131.
  • Zhu, L. and Carlin, B. (2000) Comparing hierarchical models for spatio-temporally misaligned data using the deviance information criterion. Statist. Med., 19, 22652278.