SEARCH

SEARCH BY CITATION

References

  • 1
    Stuart JC, Diederen B, al Naiemi N et al. Method for phenotypic detection of extended-spectrum β-lactamases in Enterobacter species in the routine clinical setting. J Clin Microbiol 2011; 49: 27112713.
  • 2
    Wu TL, Chia JH, Su LH, Chu C, Kuo AJ, Chiu CH. Dissemination of extended-spectrum β-lactamase-producing Enterobacteriaceae in intensive care units of a medical center in Taiwan. Microb Drug Resist 2006; 12: 203209.
  • 3
    Cheong HS, Ko KS, Kang CI, Chung DR, Peck KR, Song JH. Clinical significance of infections caused by extended-spectrum β-lactamase-producing Enterobacteriaceae blood isolates with inducible AMP-C β-lactamase. Microb Drug Resist 2012; 18: 446452.
  • 4
    Kim J, Lim YM. Prevalence of derepressed AMP-C mutants and extended-spectrum β-lactamase producers among clinical isolates of Citrobacter freundii, Enterobacter spp., and Serratia marcescens in Korea: dissemination of CTX-M-3, TEM-52, and SHV-12. J Clin Microbiol 2005; 43: 24522455.
  • 5
    Glatz K, Toth A, Paszti J. Emergence of SHV-2a producing Enterobacter cloacae in Hungary. Acta Microbiol Immunol Hung 2007; 54: 151158.
  • 6
    Jiang X, Ni Y, Jiang Y et al. Outbreak of infection caused by Enterobacter cloacae producing the novel VEB-3 β-lactamase in China. J Clin Microbiol 2005; 43: 826831.
  • 7
    Lahlaoui H, Anis BH, Mohamed K, Mohamed BM. Emergence of SHV-12 extended spectrum β-lactamase among clinical isolates of Enterobacter cloacae in Tunisia. Microb Pathog 2012; 53: 6465.
  • 8
    Carattoli A. Resistance plasmid families in Enterobacteriaceae. Antimicrob Agents Chemother 2009; 53: 22272238.
  • 9
    Birkett CI, Ludlam HA, Woodford N et al. Real-time taqman PCR for rapid detection and typing of genes encoding CTX-M extended-spectrum β-lactamases. J Med Microbiol 2007; 56: 5255.
  • 10
    Tofteland S, Haldorsen B, Dahl KH et al. Effects of phenotype and genotype on methods for detection of extended-spectrum-β-lactamase-producing clinical isolates of Escherichia coli and Klebsiella pneumoniae in Norway. J Clin Microbiol 2007; 45: 199205.
  • 11
    Karah N, Poirel L, Bengtsson S et al. Plasmid-mediated quinolone resistance determinants qnr and aac(6')-ib-cr in Escherichia coli and Klebsiella spp. from Norway and Sweden. Diagn Microbiol Infect Dis 2010; 66: 425431.
  • 12
    Kim HB, Park CH, Kim CJ, Kim EC, Jacoby GA, Hooper DC. Prevalence of plasmid-mediated quinolone resistance determinants over a 9-year period. Antimicrob Agents Chemother 2009; 53: 639645.
  • 13
    Carattoli A, Bertini A, Villa L, Falbo V, Hopkins KL, Threlfall EJ. Identification of plasmids by PCR-based replicon typing. J Microbiol Methods 2005; 63: 219228.
  • 14
    Nasser U, Haldorsen B, Tofteland S et al. Molecular characterization of CTX-M-15-producing clinical isolates of Escherichia coli reveals the spread of multidrug-resistant st131 (o25:H4) and st964 (o102:H6) strains in Norway. APMIS 2009; 117: 526536.
  • 15
    Tenover FC, Arbeit RD, Goering RV et al. Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol 1995; 33: 22332239.
  • 16
    NORM/NORM-VET 2011. Usage of Antimicrobial Agents and Occurrence of Antimicrobial Resistance in Norway. Tromsø/Oslo 2012. ISSN:1502-2307 (print)/1890-9965 (electronic).
  • 17
    Briales A, Rodriguez-Martinez JM, Velasco C et al. Prevalence of plasmid-mediated quinolone resistance determinants qnr and aac(6')-ib-cr in Escherichia coli and Klebsiella pneumoniae producing extended-spectrum β-lactamases in Spain. Int J Antimicrobial Agents 2012; 39: 431434.
  • 18
    Miro E, Segura C, Navarro F et al. Spread of plasmids containing the bla(VIM-1) and bla(CTX-M) genes and the qnr determinant in Enterobacter cloacae, Klebsiella pneumoniae and Klebsiella oxytoca isolates. J Antimicrobial Chemother 2010; 65: 661665.