SEARCH

SEARCH BY CITATION

References

  • 1
    Haymann J. Mycobacterium ulcerans: an infection from Jurassic time? Lancet 1984; 2: 10151016.
  • 2
    Kapur V, Whittam TS, Musser JM. Is Mycobacterium tuberculosis 15 000 years old? J Infect Dis 1994; 170: 13481349.
  • 3
    Daniel VS, Daniel TM. Old Testament biblical references to tuberculosis. Clin Infect Dis 1999; 29: 15571558.
  • 4
    Morse D, Brothwell DR, Ucko PJ. Tuberculosis in ancient Egypt. Am Rev Respir Dis 1964; 90: 524541.
  • 5
    Cave AJE. The evidence for the incidence of tuberculosis in ancient Egypt. Br J Tuberc 1939; 33: 142152.
  • 6
    Drancourt M, Raoult D. Paleomicrobiology: current issues and perspectives. Nat Rev Microbiol 2005; 3: 2335.
  • 7
    Donoghue HD, Spigelman M, Greenblatt CL et al. Tuberculosis: from prehistory to Robert Koch, as revealed by ancient DNA. Lancet Infect Dis 2004; 4: 584592.
  • 8
    Donoghue HD. Insights into ancient leprosy and tuberculosis using metagenomics. Trends Microbiol 2013; 21: 448450.
  • 9
    Kappelman J, Alcicek MC, Kazanci N, Schultz M, Ozkul M, Sen S. First Homo erectus from Turkey and implications for migrations into temperate Eurasia. Am J Phys Anthropol 2008; 135: 110116.
  • 10
    Rothschild BM, Martin LD, Lev G et al. Mycobacterium tuberculosis complex DNA from an extinct bison dated 17,000 years before the present. Clin Infect Dis 2001; 33: 305311.
  • 11
    Lee OY, Wu HH, Donoghue HD. Mycobacterium tuberculosis complex lipid virulence factors preserved in the 17,000-year-old skeleton of an extinct bison, Bison antiquus. PLoS ONE 2012; 7: e41923.
  • 12
    Nicklisch N, Maixner F, Ganslmeier R et al. Rib lesions in skeletons from early neolithic sites in Central Germany: on the trail of tuberculosis at the onset of agriculture. Am J Phys Anthropol 2012; 149: 391404.
  • 13
    Hershkovitz I, Donoghue HD, Minnikin DE et al. Detection and molecular characterization of 9,000-year-old Mycobacterium tuberculosis from a Neolithic settlement in the Eastern Mediterranean. PLoS ONE 2008; 3: e3426.
  • 14
    Nerlich AG, Haas CJ, Zink A, Szeimies U, Hagedorn HG. Molecular evidence for tuberculosis in an ancient Egyptian mummy. Lancet 1997; 350: 1404.
  • 15
    Zink AR, Sola C, Reischl U et al. Characterization of Mycobacterium tuberculosis complex DNAs from Egyptian mummies by spoligotyping. J Clin Microbiol 2003; 41: 359367.
  • 16
    Lalremruata A, Ball M, Bianucci R et al. Molecular identification of falciparum malaria and human tuberculosis co-infections in mummies from the Fayum depression (Lower Egypt). PLoS ONE 2013; 8: e60307.
  • 17
    Marten B. A New Theory of Consumptions—More Especially a Phthisis or Consumption of the Lungs. London: T. Knaplock, 1720.
  • 18
    Koch R. Die Äetiologie der Tuberkulose. Berliner klinische Wochenschrift 1882; 15: 221230.
  • 19
    Villemin JA. Cause et nature de la tuberculose. Bull Acad Med 1865; 37: 211216.
  • 20
    Villemin JA. Etudes sur la tuberculose: preuves rationnelles et expérimentales de sa spécificité et de son inoculabilité. Paris: J.-B. Baillière, 1868.
  • 21
    Sakula A. Robert Koch: centenary of the discovery of the tubercle bacillus, 1882. Thorax 1982; 4: 246251.
  • 22
    Brierley R. Hunterian Museum re-opens. Lancet Infect Dis 2005; 5: 207.
  • 23
    Lehmann KB, Neumann R. Atlas und Grundriss der Bakteriologie und Lehrbuch der speziellen bakteriologischen Diagnostik, 1st edn. Munchen: J.F. Lehmann, 1896.
  • 24
    Weigert C. Färbung der Bacterien mit Anilinfarben. Breslau: Universität Breslau, 1875.
  • 25
    Ziehl F. Zur Färbung des tuberkelbacillus. Dtsch Med Wochenschr 1882; 8: 451.
  • 26
    Koch R. Zur Untersuchung von Pathogen Organismen. Mittheilungen aus dem Kaiserlichen Gesundheitsamte 1881; 1: 148.
  • 27
    Philip RW. The passing of tuberculosis. Glasgow Med 1913; 79: 321334.
  • 28
    Clayson C. Sir Robert Philip and the conquest of tuberculosis. BMJ 1957; 2: 15031508.
  • 29
    Mantoux C. L'intradermo-reaction à la tuberculine. La Presse médicale 1910; 2: 1013.
  • 30
    Rangaka MX, Wilkinson KA, Glynn JR et al. Predictive value of interferon-γ release assays for incident active tuberculosis: a systematic review and meta-analysis. Lancet Infect Dis 2012; 12: 4555.
  • 31
    Calmette A, Guérin C. Nouvelles recherches expérimentales sur la vaccination des bovidés contre la tuberculose. Ann Inst Pasteur (Paris) 1920; 34: 553560.
  • 32
    Calmette A, Guerin C, Weil-Halle B. Essai d'immunisation contre l'infection tuberculeuse. Bull Acad Med 1924; 91: 787796.
  • 33
    Aronson JD, Aronson CF, Taylor HC. A twenty-year appraisal of BCG vaccination in the control of tuberculosis. Arch Intern Med 1958; 5: 881893.
  • 34
    Brosch R, Gordon SV, Marmiesse M et al. A new evolutionary scenario for the Mycobacterium tuberculosis complex. Proc Natl Acad Sci U S A 2002; 6: 36843689.
  • 35
    Schatz A, Bugie E, Waksman S. Streptomycin: substance exhibiting antibiotic activity against Gram positive and Gram negative bacteria. Proc Soc Exp Biol Med 1944; 55: 6669.
  • 36
    Ahmad Z, Makaya NH, Grosset J. History of drug discovery: early evaluation studies and lessons learnt from them. In Antituberculosis chemotherapy, Donald PR, van Helden PD (eds). Prog Respir Res 2011; 40, 29.
  • 37
    Arvand M, Mielke ME, Weinke T, Regnath T, Hahn H. Primary isolation of Mycobacterium tuberculosis on blood agar during the diagnostic process for cat scratch disease. Infection 1998; 26: 254.
  • 38
    Drancourt M, Carrieri P, Gévaudan MJ, Raoult D. Blood agar and Mycobacterium tuberculosis: the end of a dogma. J Clin Microbiol 2003; 41: 17101711.
  • 39
    Drancourt M, Raoult D. Cost-effectiveness of blood agar for isolation of mycobacteria. PLoS Negl Trop Dis 2007; 1: e83.
  • 40
    Coban AY, Uzun M, Bozdogan B. Evaluation of agar-based medium with sera for testing of drug susceptibility of Mycobacterium tuberculosis to Isoniazid, rifampin, ethambutol, and streptomycin. J Clin Microbiol 2013; 12: 42434245.
  • 41
    Lotz A, Ferroni A, Beretti JL et al. Rapid identification of mycobacterial whole cells in solid and liquid culture media by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 2010; 48: 44814486.
  • 42
    Machen A, Kobayashi M, Connelly MR, Wang YF. Comparison of heat inactivation and cell disruption protocols for identification of mycobacteria from solid culture media by use of vitek matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 2013; 51: 42264229.
  • 43
    World Health Organization. Policy Statement: Automated real-time nucleic acid amplification technology for rapid and simultaneous detection of tuberculosis and rifampicin resistance: Xpert MTB/RIF system. Geneva, Switzerland: WHO, 2011.