The Effective Factors on the Structure of Butter and Other Milk Fat-Based Products

Authors


Direct inquiries to author Rønholt (E-mail: stine.roenholt@sund.ku.dk).

Abstract

Butter and other milk fat-based products are valuable products for the dairy industry due to their unique taste, their textural characteristics, and nutritional value. However, an increased consumer demand for low-fat-based products increases the need for an increased essential understanding of the effective factors governing the structure of milk fat-based products. Today, 2 manufacturing techniques are available: the churning method and the emulsification method. The first is typically used for production of butter with a globular structure, which has become increasingly popular to obtain low-fat-based products, typically without presence of milk fat globules. The microstructure of milk fat-based products is strongly related to their structural rheology, hence applications. Structural behavior is not determined by one single parameter, but by the interactions between many. This complexity is reviewed here. Parameters such as thermal treatment of cream prior to butter making, water content, and chemical composition influence not only crystal polymorphism, but also the number and sizes of fat crystals. The number of crystal–crystal interactions formed within the products is related to product hardness. During storage, however, postcrystallization increases the solid fat content and strengthens the fat crystal network. The fat crystal network is strengthened by the formation of more and stronger crystal–crystal interactions due to mechanically interlinking of fat crystals, which occurs during crystal growth. Postcrystallization is directly linked to chemical composition. The initially observed microstructural difference causing different rheological behavior will disappear during storage due to postcrystallization and formation of more crystal–crystal interactions.

Ancillary