SEARCH

SEARCH BY CITATION

References

  • Albano E, Clot P, Morimoto M, Tomasi A, Ingelman-Sundberg M & French SW (1996) Role of cytochrome P4502E1-dependent formation of hydroxyethyl free radical in the development of liver damage in rats intragastrically fed with ethanol. Hepatology 23: 155163.
  • Auchere F, Santos R, Planamente S, Lesuisse E & Camadro JM (2008) Glutathione-dependent redox status of frataxin-deficient cells in a yeast model of Friedreich's ataxia. Human Mol Gen 17: 27902802.
  • Campos-García J, Ordóñez LG & Soberón-Chávez G (2000) The Pseudomonas aeruginosa hscA gene encodes Hsc66, a DnaK homologue. Microbiology 146: 14291435.
  • Chi Z & Arneborg N (1999) Relationship between lipid composition, frequency of ethanol-induced respiratory deficient mutants, and ethanol tolerance in Saccharomyces cerevisiae. J Appl Microbiol 86: 10471052.
  • Conte L & Zara V (2011) The Rieske Iron-Sulfur Protein: import and assembly into the Cytochrome bc(1) complex of yeast mitochondria. Bioinorg Chem Appl 2011: 363941. DOI: 10.1155/2011/363941.
  • Costa V, Amorim MA, Reis E, Quintanilha A & Moradas-Ferreira P (1997) Mitochondrial superoxide dismutase is essential for ethanol tolerance of Saccharomyces cerevisiae in the post-diauxic phase. Microbiology 143: 16491656.
  • Drakulic T, Temple MD, Guido R, Jarolim S, Breitenbach M, Attfield PV & Dawes IW (2005) Involvement of oxidative stress response genes in redox homeostasis, the level of reactive oxygen species, and ageing in Saccharomyces cerevisiae. FEMS Yeast Res 5: 12151228.
  • Du X & Takagi H (2007) N-Acetyltransferase Mpr1 confers ethanol tolerance on Saccharomyces cerevisiae by reducing reactive oxygen species. Appl Microbiol Biotechnol 75: 13431351.
  • Dutkiewicz R, Schilke B, Knieszner H, Walter W, Craig EA & Marszalek J (2003) Ssq1, a mitochondrial Hsp70 involved in iron-sulfur (Fe/S) center biogenesis. Similarities to and differences from its bacterial counterpart. J Biol Chem 278: 2971929727.
  • Endo A, Nakamura T, Ando A, Tokuyasu K & Shima J (2008) Genome-wide screening of the genes required for tolerance to vanillin, which is a potential inhibitor of bioethanol fermentation, in Saccharomyces cerevisiae. Biotechnol Biofuels 1: 3.
  • Farrugia G & Balzan R (2012) Oxidative stress and programmed cell death in yeast. Front Oncol 2: 64.
  • Hoff KG, Silberg JJ & Vickery LE (2000) Interaction of the iron-sulfur cluster assembly protein IscU with the Hsc66/Hsc20 molecular chaperone system of Escherichia coli. P Natl Acad Sci USA 97: 77907795.
  • Kitagaki H, Araki Y, Funato K & Shimoi H (2007) Ethanol-induced death in yeast exhibits features of apoptosis mediated by mitochondrial fission pathway. FEBS Lett 581: 29352942.
  • Lewis JA, Elkon IM, McGee MA, Higbee AJ & Gasch AP (2010) Exploiting natural variation in Saccharomyces cerevisiae to identify genes for increased ethanol resistance. Genetics 186: 11971205.
  • Lill R (2009) Function and biogenesis of iron-sulphur proteins. Nature 460: 831838.
  • Lill R & Muhlenhoff U (2006) Iron-sulfur protein biogenesis in eukaryotes: components and mechanisms. Annu Rev Cell Dev Biol 22: 457486.
  • Lill R, Hoffmann B, Molik S, Pierik AJ, Rietzschel N, Stehling O, Uzarska MA, Webert H, Wilbrecht C & Mühlenhoff U (2012) The role of mitochondria in cellular iron-sulfur protein biogenesis and iron metabolism. Biochim Biophys Acta 1823: 14911508.
  • López-Alvarez A, Díaz-Pérez AL, Sosa-Aguirre C, Macías-Rodríguez L & Campos-García J (2012) Ethanol yield and volatile compound content in fermentation of agave must by Kluyveromyces marxianus UMPe-1 comparing with Saccharomyces cerevisiae baker's yeast used in tequila production. J Biosci Bioeng 113: 614618.
  • Ma M & Liu ZL (2010) Mechanisms of ethanol tolerance in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 87: 829845.
  • Madeo F, Fröhlich E, Ligr M, Grey M, Sigrist SJ, Wolf DH & Fröhlich KU (1999) Oxygen Stress: a regulator of apoptosis in yeast. J Cell Biol 145: 757767.
  • Marks VD, Ho Sui SJ, Erasmus D, van der Merwe GK, Brumm J, Wasserman WW, Bryan J & van Vuuren HJ (2008) Dynamics of the yeast transcriptome during wine fermentation reveals a novel fermentation stress response. FEMS Yeast Res 8: 3552.
  • Mühlenhoff U, Richter N, Pines O, Pierik AJ & Lill R (2011) Specialized function of yeast Isa1 and Isa2 proteins in the maturation of mitochondrial [4Fe-4S] proteins. J Biol Chem 286: 4120541216.
  • Ng H, Smith DJ & Nagley P (2012) Application of flow cytometry to determine differential redistribution of cytochrome c and Smac/DIABLO from mitochondria during cell death signaling. PLoS ONE 7: e42298.
  • Novitskiy G, Traore K, Wang L, Trush MA & Mezey E (2006) Effects of ethanol and acetaldehyde on reactive oxygen species production in rat hepatic stellate cells. Alcohol Clin Exp Res 30: 14291435.
  • Rodríguez-Manzaneque MT, Ros J, Cabiscol E, Sorribas A & Herrero E (1999) Grx5 glutaredoxin plays a central role in protection against protein oxidative damage in Saccharomyces cerevisiae. Mol Cell Biol 19: 81808190.
  • Rodríguez-Manzaneque MT, Tamarit J, Bellí G, Ros J & Herrero E (2002) Grx5 is a mitochondrial glutaredoxin required for the activity of iron/sulfur enzymes. Mol Biol Cell 13: 11091121.
  • Schilke B, Voisine C, Beinert H & Craig E (1999) Evidence for a conserved system for iron metabolism in the mitochondria of Saccharomyces cerevisiae. P Natl Acad Sci USA 96: 1020610211.
  • Schilke B, Williams B, Knieszner H, Pukszta S, D'Silva P, Craig EA & Marszalek J (2006) Evolution of mitochondrial chaperones utilized in Fe-S cluster biogenesis. Curr Biol 16: 16601665.
  • Shaik IH & Mehvar R (2006) Rapid determination of reduced and oxidized glutathione levels using a new thiol-masking reagent and the enzymatic recycling method: application to the rat liver and bile samples. Anal Bioanal Chem 385: 105113.
  • Stanley D, Bandara A, Fraser S, Chambers PJ & Stanley GA (2010) The ethanol stress response and ethanol tolerance of Saccharomyces cerevisiae. J Appl Microbiol 109: 1324.
  • Strober W (1997) Trypan blue exclusion test of cell viability. Curr Protoc Immunol 21: A.3B.1A.3B.2.
  • Teixeira MC, Raposo LR, Mira NP, Lourenço AB & Sá-Correia I (2009) Genome-wide identification of Saccharomyces cerevisiae genes required for maximal tolerance to ethanol. Appl Environ Microbiol 75: 57615772.
  • Yoshikawa K, Tanaka T, Furusawa C, Nagahisa K, Hirasawa T & Shimizu H (2009) Comprehensive phenotypic analysis for identification of genes affecting growth under ethanol stress in Saccharomyces cerevisiae. FEMS Yeast Res 9: 3244.
  • Zigman S, Schultz JB & Schultz M (1998) Measurement of oxygen production by in vitro human and animal lenses with an oxygen electrode. Curr Eye Res 17: 115119.