SEARCH

SEARCH BY CITATION

References

  • Achtnich C, Bak F & Conrad R (1995) Competition for electron donors among nitrate reducers, ferric iron reducers, sulfate reducers, and methanogens in anoxic paddy soils. Biol Fertil Soils 19: 6572.
  • Albert DB & Martens CS (1997) Determination of low-molecular-weight organic acid concentrations in seawater and pore-water samples via HPLC. Mar Chem 56: 2737.
  • Bombach P, Chatzinotas A, Neu TR, Kästner M, Lueders T & Vogt C (2010) Enrichment and characterization of a sulfate-reducing toluene-degrading microbial consortium by combining in situ microcosms and stable isotope probing techniques. FEMS Microbiol Ecol 71: 237246.
  • Bowman JP & McCuaig RD (2003) Biodiversity, community structural shifts, and biogeography of prokaryotes within Antarctic continental shelf sediment. Appl Environ Microbiol 69: 24632483.
  • Bowman JP, Gosink JJ, McCammon SA, Lewis TE, Nichols DS, Nichols PD, Skerratt JH, Stanley JT & McMeekin TA (1998) Colwellia demingiae sp. nov., Colwellia hornerae sp. nov., Colwellia rossensis sp. nov. and Colwellia psychrotropica sp. nov.: psychrophilic Antarctic species with the ability to synthesize docosahexaenoic acid (22:6ω?3). Int J Syst Bacteriol 48: 11711180.
  • Braman RS & Hendrix SA (1989) Nanogram nitrite and nitrate determination in environmental and biological materials by vanadium(III) reduction with chemi-luminescence detection. Anal Chem 61: 27152718.
  • Burdige DJ & Komada T (2011) Anaerobic oxidation of methane and the stoichiometry of remineralization processes in continental margin sediments. Limnol Oceanogr 56: 17811796.
  • Canfield DE (1989) Reactive iron in marine sediments. Geochim Cosmochim Acta 53: 619632.
  • Canfield DE, Jørgensen BB, Fossing H, Glud R, Gundersen J, Ramsing NB, Thamdrup B, Hansen JW, Nielsen LP & Hall POJ (1993) Pathways of organic carbon oxidation in three continental margin sediments. Mar Geol 113: 2740.
  • Chang Y-J, Long PE, Geyer R et al. (2005) Microbial incorporation of 13C-labeled acetate at the field scale: detection of microbes responsible for reduction of U(VI). Environ Sci Technol 39: 90399048.
  • Christensen D (1984) Determination of substrates oxidized by sulfate reduction in intact cores of marine sediments. Limnol Oceanogr 29: 189192.
  • Cline JD (1969) Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol Oceanogr 14: 454458.
  • Coleman ML, Hedrick DB, Lovley DR, White DC & Pye K (1993) Reduction of Fe(III) in sediments by sulphate-reducing bacteria. Nature 361: 436438.
  • Donachie SP, Bowman JP, On SLW & Alam M (2005) Arcobacter halophilus sp. nov., the first obligate halophile in the genus Arcobacter. Int J Syst Evol Microbiol 55: 12711277.
  • Finke N, Vandieken V & Jørgensen BB (2007) Acetate, lactate, propionate, and isobutyrate as electron donors for iron and sulfate reduction in Arctic marine sediments, Svalbard. FEMS Microbiol Ecol 59: 1022.
  • Fossing H & Jørgensen BB (1989) Measurement of bacterial sulfate reduction in sediments: evaluation of a single-step chromium reduction method. Biogeochemistry 8: 205222.
  • Fukui M, Suh J, Yonezawa Y & Urushigawa Y (1997) Major substrates for microbial sulfate reduction in the sediments of Ise Bay, Japan. Ecol Res 12: 201209.
  • Gevertz D, Telang AJ, Voordouw G & Jenneman GE (2000) Isolation and characterization of strains CVO and FWKO B, two novel nitrate-reducing, sulfide-oxidizing bacteria isolated from oil field brine. Appl Environ Microbiol 66: 24912501.
  • Ginige MP, Keller J & Blackall LL (2005) Investigation of an acetate-fed dinitrifying microbial community by stable isotope probing, full-cycle rRNA analysis, and fluorescent in situ hybridization-microautoradiography. Appl Environ Microbiol 71: 86838691.
  • Giovannoni SJ, Rappé MS, Vergin KL & Adair NL (1996) 16S rRNA genes reveal stratified open ocean bacterioplankton populations related to the Green Non-Sulfur bacteria. P Natl Acad Sci USA 93: 79797984.
  • Glud RN, Gundersen JK, Røy H & Jørgensen BB (2003) Seasonal dynamics of benthic O2 uptake in a semienclosed bay: importance of diffusion and faunal activity. Limnol Oceanogr 48: 12651276.
  • Hall POJ & Aller RC (1992) Rapid, small-volume, flow injection analysis ∑CO2 and NH4+ in marine and freshwaters. Limnol Oceanogr 37: 11131119.
  • Hallberg KB & Lindström EB (1994) Characterization of Thiobacillus caldus sp. nov., a moderately thermophilic acidophile. Microbiology 140: 34513456.
  • Hallberg K, González-Toril E & Johnson D (2010) Acidithiobacillus ferrivorans sp. nov.; facultatively anaerobic, psychrotolerant iron-, and sulfur-oxidizing acidophiles isolated from metal mine-impacted environments. Extremophiles 14: 919.
  • Hansen JW, Thamdrup B & Jørgensen BB (2000) Anoxic incubation of sediment in gas-tight plastic bags: a method for biogeochemical process studies. Mar Ecol Prog Ser 208: 273282.
  • Hedlund BP, Geiselbrecht AD, Bair TJ & Staley JT (1999) Polycyclic aromatic hydrocarbon degradation by a new marine bacterium, Neptunomonas naphthovorans gen. nov., sp. nov. Appl Environ Microbiol 65: 251259.
  • Holmes DE, Finneran KT, O'Neil RA & Lovley DR (2002) Enrichment of members of the family Geobacteraceae associated with stimulation of dissimilatory metal reduction in uranium-contaminated aquifer sediments. Appl Environ Microbiol 68: 23002306.
  • Holmes DE, Bond DR & Lovley DR (2004) Electron transfer by Desulfobulbus propionicus to Fe(III) and graphite electrodes. Appl Environ Microbiol 70: 12341237.
  • Hori T, Müller A, Igarashi Y, Conrad R & Friedrich MW (2010) Identification of iron-reducing microorganisms in anoxic rice paddy soil by 13C-acetate probing. ISME J 4: 267278.
  • Jørgensen BB (1978) A comparison of methods for the quantification of bacterial sulfate reduction in coastal marine sediments. I. Measurement with radiotracer techniques. Geomicrobiol J 1: 1127.
  • Jørgensen BB (1982) Mineralization of organic matter in the sea bed – the role of sulphate reduction. Nature 296: 643645.
  • Jørgensen BB (1996) Case study – Aarhus Bay. Eutrophication in Coastal Marine Ecosystems, Vol. 52 (Jørgensen BB, Richardson K & Mooers CNK, eds), pp. 137154. American Geophysical Union, Washington, DC.
  • Jung S-Y, Oh T-K & Yoon J-H (2006) Colwellia aestuarii sp. nov., isolated from a tidal flat sediment in Korea. Int J Syst Evol Microbiol 56: 3337.
  • Kasai Y, Takahata Y, Manefield M & Watanabe K (2006) RNA-based stable isotope probing and isolation of anaerobic benzene-degrading bacteria from gasoline-contaminated groundwater. Appl Environ Microbiol 72: 35863592.
  • Kelly DP & Wood AP (2000) Reclassification of some species of Thiobacillus to the newly designated genera Acidithiobacillus gen. nov., Halothiobacillus gen. nov. and Thermithiobacillus gen. nov. Int J Syst Evol Microbiol 50: 511516.
  • Kostka JE & Luther GW III (1994) Partitioning and speciation of solid phase iron in saltmarsh sediments. Geochim Cosmochim Acta 58: 17011710.
  • Kostka JE, Thamdrup B, Glud RN & Canfield DE (1999) Rates and pathways of carbon oxidation in permanently cold Arctic sediments. Mar Ecol Prog Ser 180: 721.
  • Kristensen E, King GM, Holmer M, Banta GT, Jensen MH, Hansen K & Bussarawit N (1994) Sulfate reduction, acetate turnover and carbon metabolism in sediments of the Ao Nam Bor mangrove, Phuket, Thailand. Mar Ecol Prog Ser 109: 245255.
  • Kunapuli U, Lueders T & Meckenstock RU (2007) The use of stable isotope probing to identify key iron-reducing microorganisms involved in anaerobic benzene degradation. ISME J 1: 643653.
  • Li Y-L, Vali H, Sears SK, Yang J, Deng B & Zhang CL (2004) Iron reduction and alteration of nontronite NAu-2 by a sulfate-reducing bacterium. Geochim Cosmochim Acta 68: 32513260.
  • Llobet-Brossa E, Rosselló-Mora R & Amann R (1998) Microbial community composition of Wadden Sea sediments as revealed by fluorescence in situ hybridization. Appl Environ Microbiol 64: 26912696.
  • Lovley DR & Phillips EJP (1987) Competitive mechanisms for inhibition of sulfate reduction and methane production in the zone of ferric iron reduction in sediments. Appl Environ Microbiol 53: 26362641.
  • Lovley DR, Roden EE, Phillips EJP & Woodward JC (1993) Enzymatic iron and uranium reduction by sulfate-reducing bacteria. Mar Geol 113: 4153.
  • Lovley DR, Holmes DE & Nevin KP (2004) Dissimilatory Fe(III) and Mn(IV) reduction. Adv Microb Physiol 49: 219285.
  • Ludwig W, Strunk O, Westram R et al. (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32: 13631371.
  • Lueders T, Manefield M & Friedrich MW (2004) Enhanced sensitivity of DNA- and rRNA-based stable isotope probing by fractionation and quantitative analysis of isopycnic centrifugation gradients. Environ Microbiol 6: 7378.
  • Miyatake T, MacGregor BJ & Boschker TS (2009) Linking microbial community function to phylogeny of sulfate-reducing Deltaproteobacteria in marine sediments by combining stable isotope probing with magnetic-bead capture hybridization of 16S rRNA. Appl Environ Microbiol 75: 49274935.
  • Moeslund L, Thamdrup B & Jørgensen BB (1994) Sulfur and iron cycling in a coastal sediment: radiotracer studies and seasonal dynamics. Biogeochemistry 27: 129152.
  • Mußmann M, Ishii K, Rabus R & Amann R (2005) Diversity and vertical distribution of cultured and uncultured Deltaproteobacteria in an intertidal mud flat of the Wadden Sea. Environ Microbiol 7: 405418.
  • Muyzer G, Teske A, Wirsen CO & Jannasch HW (1995) Phylogenetic relationship of Thiomicrospira species and their identification in deep-sea hydrothermal vent samples by denaturing gradient gel electrophoresis of 16S rDNA fragments. Arch Microbiol 164: 165172.
  • Nealson KH, Myers CR & Wimpee RR (1991) Isolation and identification of manganese-reducing bacteria and estimates of microbial Mn(IV)-reducing potential in the Black Sea. Deep Sea Res 38: S907S920.
  • Osaka T, Yoshie S, Tsuneda S, Hirata A, Iwami N & Inamori Y (2006) Identification of acetate- or methanol-assimilating bacteria under nitrate-reducing conditions by stable-isotope probing. Microb Ecol 52: 253266.
  • Parkes RJ, Gibson GR, Mueller-Harvey I, Buckingham WJ & Herbert RA (1989) Determination of the substrates for sulphate-reducing bacteria within marine and estuarine sediments with different rates of sulphate reduction. J Gen Microbiol 135: 175187.
  • Pester M, Bittner N, Deevong P, Wagner M & Loy A (2010) A `rare biosphere' microorganism contributes to sulfate reduction in a peatland. ISME J 4: 15911602.
  • Pilloni G, von Netzer F, Engel M & Lueders T (2011) Electron acceptor-dependent identification of key anaerobic toluene degraders at a tar-oil-contaminated aquifer by Pyro-SIP. FEMS Microbiol Ecol 78: 165175.
  • Rasmussen H & Jørgensen BB (1992) Microelectrode studies of seasonal oxygen uptake in a coastal sediment: role of molecular diffusion. Mar Ecol Prog Ser 81: 289303.
  • Ravenschlag K, Sahm K, Knoblauch C, Jørgensen BB & Amann R (2000) Community structure, cellular rRNA content, and activity of sulfate-reducing bacteria in marine Arctic sediments. Appl Environ Microbiol 66: 35923602.
  • Rysgaard S, Thamdrup B, Risgaard-Petersen N, Fossing H, Berg P, Christensen PB & Dalsgaard T (1998) Seasonal carbon and nutrient mineralization in a high-Arctic coastal marine sediment, Young Sound, Northeast Greenland. Mar Ecol Prog Ser 175: 261276.
  • Schloss PD & Handelsman J (2005) Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl Environ Microbiol 71: 15011506.
  • Shaw DG & McIntosh DJ (1990) Acetate in recent anoxic sediments: direct and indirect measurements of concentration and turnover rates. Estuar Coast Shelf Sci 31: 775788.
  • Snoeyenbos-West OL, Nevin KP, Anderson RT & Lovley DR (2000) Enrichment of Geobacter species in response to stimulation of Fe(III) reduction in sandy aquifer sediments. Microb Ecol 39: 153167.
  • Sørensen J, Christensen D & Jørgensen BB (1981) Volatile fatty acids and hydrogen as substrates for sulfate-reducing bacteria in anaerobic marine sediment. Appl Environ Microbiol 42: 511.
  • Stookey LL (1970) Ferrozine – a new spectrophotometric reagent for iron. Anal Chem 42: 779781.
  • Temple KL & Colmer AR (1951) The autotrophic oxidation of iron by a new bacterium: Thiobacillus ferrooxidans. J Bacteriol 62: 605611.
  • Thamdrup B (2000) Bacterial manganese and iron reduction in aquatic sediments. Adv Microb Ecol 16: 4184.
  • Thamdrup B & Canfield DE (1996) Pathways of carbon oxidation in continental margin sediments off central Chile. Limnol Oceanogr 41: 16291650.
  • Thamdrup B & Dalsgaard T (2008) Nitrogen cycling in sediments. Microbial Ecology of the Oceans (Kirchman DL, ed.), pp. 527568. John Wiley & Sons, Inc., Hoboken, NJ.
  • Thamdrup B, Fossing H & Jørgensen BB (1994) Manganese, iron, and sulfur cycling in a coastal sediment, Aarhus Bay, Denmark. Geochim Cosmochim Acta 58: 51155129.
  • Thamdrup B, Rosselló-Mora R & Amann R (2000) Microbial manganese and sulfate reduction in Black Sea shelf sediments. Appl Environ Microbiol 66: 28882897.
  • Vandieken V, Finke N & Jørgensen BB (2006) Pathways of carbon mineralization in an Arctic fjord sediment (Svalbard) and isolation of psychrophilic and psychrotolerant iron-reducing bacteria. Mar Ecol Prog Ser 322: 2941.
  • Vandieken V, Pester M, Finke N, Hyun J-H, Friedrich MW, Loy A & Thamdrup B (2012) Three manganese oxide-rich marine sediments harbor similar communities of acetate-oxidizing manganese-reducing bacteria. ISME J 6: 20782090.
  • Whiteley AS, Thomson B, Lueders T & Manefield M (2007) RNA stable-isotope probing. Nat Protoc 2: 838844.
  • Widdel F & Bak F (1992) Gram-negative mesophilic sulfate-reducing bacteria. The Prokaryotes (Balows A, Trüper HG, Dworkin M, Harder W & Schleifer KH, eds), pp. 33523378. Springer Verlag, Berlin.
  • Wirsen CO, Sievert SM, Cavanaugh CM, Molyneaux SJ, Ahmad A, Taylor LT, DeLong EF & Taylor CD (2002Characterization of an autotrophic sulfide-oxidizing marine Arcobacter sp. that produces filamentous sulfur. Appl Environ Microbiol 68: 316325.