SEARCH

SEARCH BY CITATION

Keywords:

  • viral metagenomics;
  • temperate phage;
  • diazotroph;
  • cyanobacteria

Abstract

Trichodesmium surface aggregations shape the co-occurring microbial community by providing organic carbon and nitrogen and surfaces on which microorganisms can aggregate. Rapid collapse of Trichodesmium aggregations leads to drastic changes in the chemical and physical properties of surrounding waters, eliciting a response from the microbial community and their associated viruses. Three viral metagenomes were constructed from experimentally lysed Trichodesmium collected from two locations in the eastern Gulf of Mexico. Trichodesmium were either treated with mitomycin C to induce potential lysogens or incubated in the absence of mitomycin C. Comparative analyses of viral contiguous sequences indicated that viral composition was responsive to treatment type. Cyanophages were more represented within incubations treated with mitomycin C, while gammaproteobacterial phages were more represented within the untreated incubation. The detection of latent bacteriophage integrases in both the chemically treated and untreated incubations suggests that Trichodesmium death may lead to prophage induction within associated microorganisms. While no single cyanophage-like genotype associated with Trichodesmium lysis could be identified that might point to an infectious Trichodesmium phage, reads resembling Trichodesmium were recovered. These data reveal a diverse consortium of lytic and temperate phages associated with Trichodesmium whose patterns of representation within treated and untreated libraries offer insights into the activities of host and viral communities during Trichodesmium aggregation collapse.