SEARCH

SEARCH BY CITATION

References

  • Amann R, Krumholz L & Stahl D (1990) Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J Bacteriol 172: 762.
  • Ashelford KE, Chuzhanova NA, Fry JC, Jones AJ & Weightman AJ (2005) At least 1 in 20 16S rRNA sequence records currently held in public repositories is estimated to contain substantial anomalies. Appl Environ Microbiol 71: 77247736.
  • Ashelford K, Chuzhanova N, Fry J, Jones A & Weightman A (2006) New screening software shows that most recent large 16S rRNA gene clone libraries contain chimeras. Appl Environ Microbiol 72: 57345741.
  • Chan C, Fakra S, Emerson D, Fleming EJ & Edwards K (2011) Lithotrophic iron-oxidizing bacteria produce organic stalks to control mineral growth: implications for biosignature formation. ISME J 5: 717727.
  • Comolli L, Luef B & Chan C (2011) High-resolution 2D and 3D cryo-tem reveals structural adaptations of two stalk-forming bacteria to an iron-oxidizing lifestyle. Environ Microbiol 13: 29152929.
  • Davis RE & Moyer CL (2008) Extreme spatial and temporal variability of hydrothermal microbial mat communities along the Mariana Island arc and southern Mariana Back-arc-system. J Geophys Res 113: 17.
  • Edwards KJ, Glazer BT, Rouxel OJ et al. (2011) Ultra-diffuse hydrothermal venting supports iron-oxidizing bacteria and massive umber deposition at 5000 m off Hawaii. ISME J 5: 17481758.
  • Emerson D & Moyer CL (2002) Neutrophilic iron-oxidizing bacteria are abundant at the Loihi seamount hydrothermal vents and play a major role in Fe oxide deposition. Appl Environ Microbiol 68: 30853093.
  • Emerson D & Moyer CL (2010) Microbiology of seamounts; common patterns observed in community structure. Oceanography 23: 148163.
  • Emerson D & Revsbech NP (1994) Investigation of an iron-oxidizing microbial mat community located near Aarhus, Denmark: field studies. Appl Environ Microbiol 60: 40224031.
  • Emerson D & Weiss JV (2004) Bacterial iron oxidation in circumneutral freshwater habitats: findings from the field and the laboratory. Geomicrobiol J 21: 405414.
  • Emerson D, Rentz JA, Lilburn TG & Davis RE (2007) A novel lineage of proteobacteria involved in formation of marine iron-oxidizing microbial mat communities. PLoS ONE 2: e667.
  • Emerson D, Fleming E & McBeth J (2010) Iron-oxidizing bacteria: an environmental and genomic perspective. Annu Rev Microbiol 64: 561683.
  • Fleming EJ, Langdon A, Martinez-Garcia M, Stepanauskas R, Poulton N, Masland E & Emerson D (2011) What's new is old: resolving the identity of Leptothrix ochracea using single cell genomics, pyrosequencing and FISH. PLoS ONE 6: e17769.
  • Forget NL, Murdock SA & Juniper SK (2010) Bacterial diversity in Fe-rich hydrothermal sediments at two south Tonga arc submarine volcanoes. Geobiology 8: 417432.
  • Fuchs BM, Glöckner FO, Wulf J & Amann R (2000) Unlabeled helper oligonucleotides increase the in situ accessibility to 16S rRNA of fluorescently labeled oligonucleotide probes. Appl Environ Microbiol 66: 36033607.
  • Garcia M, Caplan-Auerbach J, De Carlo E, Kurz MD & Becker N (2006) Geology, geochemistry and earthquake history of Lõ′ihi seamount, Hawaìi's youngest volcano. Chem Erde 66: 81108.
  • Ghiorse W (1984) Biology of iron-and manganese-depositing bacteria. Annu Rev Microbiol 38: 515550.
  • Glazer B & Rouxel O (2009) Redox speciation and distribution within diverse iron-dominated microbial habitats at Lõ′ihi seamount. Geomicrobiol J 26: 606622.
  • Handley KM, Boothman C, Mills RA, Pancost RD & Lloyd JR (2010) Functional diversity of bacteria in a ferruginous hydrothermal sediment. ISME J 4: 11931205.
  • Hodges TW & Olson JB (2009) Molecular comparison of bacterial communities within iron-containing flocculent mats associated with submarine volcanoes along the Kermadec Arc. Appl Environ Microbiol 75: 16501657.
  • James RE, Scott SD, Fortin D, Clark ID & Ferris FG (2012) Regulation of Fe3+-oxide Formation Among Fe2+-oxidizing Bacteria. Geomicrobiol J 29: 537543.
  • Jørgensen BB & Revsbech NP (1983) Colorless sulfur bacteria, Beggiatoa spp. and Thiovulum spp., in O2 and H2S microgradients. Appl Environ Microbiol 45: 12611270.
  • Karl DM, Brittain AM & Tilbrook BD (1989) Hydrothermal and microbial processes at Loihi seamount. a mid-plate hot-spot volcano. Deep-Sea Res 36: 16551673.
  • Kato S, Kobayashi C, Kakegawa T & Yamagishi A (2009) Microbial communities in iron-silica-rich microbial mats at deep-sea hydrothermal fields of the southern Mariana trough. Environ Microbiol 11: 20942111.
  • Kormas KA, Tivey MK, Von Damm K & Teske A (2006) Bacterial and archaeal phylotypes associated with distinct mineralogical layers of a white smoker spire from a deep-sea hydrothermal vent site (9°N, East Pacific Rise). Environ Microbiol 8: 909920.
  • Lane DJ (1991) 16S/23S rRNA sequencing. Nucleic Acid Techniques in Bacterial Systematics (Steckebrandt E & Goodfellow M, eds), pp. 115176. John Wiley & Sons Ltd, New York, NY.
  • Li J, Zhou H, Peng X, Wu Z, Chen S & Fang J (2012) Microbial diversity and biomineralization in low-temperature hydrothermal iron-silica-rich precipitates of the Lau basin hydrothermal field. FEMS Microbiol Ecol 81: 205216.
  • Ludwig W, Strunk O, Westram R et al. (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32: 13631371.
  • McAllister S, Davis RE, McBeth J, Tebo B, Emerson D & Moyer CL (2011) Biodiversity and emerging biogeography of the neutrophilic iron-oxidizing zetaproteobacteria. Appl Environ Microbiol 77: 54455457.
  • McBeth J, Little BJ, Ray RI, Farrar KM & Emerson D (2011) Neutrophilic iron-oxidizing “Zetaproteobacteria” and mild steel corrosion in nearshore marine environments. Appl Environ Microbiol 77: 14051412.
  • McBeth JM, Fleming EJ & Emerson D (2013) The transition from freshwater to marine iron-oxidizing bacterial lineages along a salinity gradient on the Sheepscot River, Maine USA. Environ Microbiol Rep, doi: 10.1111/1758-2229.12033.
  • Meyer-Dombard D, Arcy R, Amend JP & Osborn MR (2012) Microbial diversity and potential for arsenic and iron biogeochemical cycling at an arsenic rich, shallow-sea hydrothermal vent (Tutum bay, Papua New Guinea). Chem Geol, doi: 10.1016/j.chemgeo.2012.02.024.
  • Moyer CL, Dobbs FC & Karl DM (1995) Phylogenetic diversity of the bacterial community from a microbial mat at an active, hydrothermal vent system, Loihi seamount, Hawaii. Appl Environ Microbiol 61: 15551562.
  • Muyzer G, Yildirim E, van Dongen U, Kühl M & Thar R (2005) Identification of ‘Candidatus Thioturbo danicus’, a microaerophilic bacterium that builds conspicuous veils on sulfidic sediments. Appl Environ Microbiol 71: 89298933.
  • Neubauer SC, Emerson D & Megonigal JP (2002) Life at the entergetic edge:kinetics of circumnueutral iron oxidation by lithotrophic iron-oxidizing bacteria isolate from the wetland-plant rhizosphere. Appl Environ Microbiol 68: 39883995.
  • Pernthaler A, Pernthaler J & Amann R (2002) Fluorescence in situ hybridization and catalyzed reporter deposition for the identification of marine bacteria. Appl Environ Microbiol 68: 30943101.
  • Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J & Glöckner FO (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35: 71887196.
  • Rasband W (2004) ImageJ: Image Processing and Analysis in Java. http://rsb.info.nih.gov/ij/.
  • Rassa AC, McAllister SM, Safran S & Moyer CL (2009) Zeta-proteobacteria dominate the formation of microbial mats in low-temperature vents at Loihi seamount, Hawaii. Geomicrobiol J 26: 623638.
  • Ruby EG, Wirsen CO & Jannasch HW (1981) Chemolithotrophic sulfur-oxidizing bacteria from the Galapagos rift hydrothermal vents. Appl Environ Microbiol 42: 317324.
  • Singer E, Emerson D, Webb EA et al. (2011) Mariprofundus ferrooxydans pv-1 the first genome of a marine Fe(II) oxidizing Zetaproteobacterium. PLoS ONE 6: e25386.
  • Spring S, Jackel U, Wagner M & Kampfer P (2004) Ottowia thiooxydans gen. nov, sp nov, a novel facultatively anaerobic, N2O-producing bacterium isolated from activated sludge, and transfer of Aquaspirillum gracile to Hylemonella gracilis gen nov, comb nov. Int J Syst Evol Microbiol 54: 99106.
  • Tartof KD & Hobbs CA (1987) Improved media for growing plasmid and cosmid clones. Bethesda Res Lab Focus 9: 12.
  • Teske A & Stahl D (2002) Microbial mats and biofilm: evolution, structure and function of fixed microbial communities. Biodiversity of Microbial Life (Staley JT & Reysenbach AL, eds), pp. 49100. Wiley-Liss, New York, NY.
  • Thar R & Kühl M (2002) Conspicuous veils formed by vibrioid bacteria on sulfidic marine sediment. Appl Environ Microbiol 68: 63106320.
  • Toner BM, Berquó TS, Michel FM, Sorensen JV, Templeton AS & Edwards KJ (2012) Minerology of iron microbial mats from Loihi Seamount. Front Microbiol 3: 118.
  • Wallner G, Amann R & Beisker W (1993) Optimizing fluorescent in situ hybridization with rRNA-targeted oligonucleotide probes for flow cytometric identification of microorganisms. Cytometry 14: 136143.
  • Wankel SD, Germanovich L, Lilley MD, Genc G, Diperna CJ, Bradley AS, Olson EJ & Girguis PR (2011) Geochemical flux and metabolic activity associated with the hydrothermal subsurface. Nat Geosci 4: 461468.
  • Wheat CG, Jannasch HW, Plant JN, Moyer C, Sansone FJ & McMurtry GM (2000) Continuous sampling of hydrothermal fluids from Loihi seamount after the 1996 event. J Geophys Res 105: 1935319367.