SEARCH

SEARCH BY CITATION

References

  • Beller HR, Chain PSG, Letain TE, Chakicherla A, Larimer FW, Richardson PM, Coleman MA, Wood AP & Kelly DP (2006) The genome sequence of the obligately chemolithoautotrophic, facultative anaerobic bacterium Thiobacillus denitrificans. J Bacteriol 188: 14731488.
  • Bentzen G, Smith AT, Benett D, Webster NJ, Reinholt F, Sletholt E & Hobson J (1995) Controlling dosing of nitrate for prevention of H2S in a sewer network and the effects of the subsequent treatment processes. Water Sci Technol 31: 293302.
  • van Breemen N & van Dijk HFG (1988) Ecosystems effects of atmospheric deposition of nitrogen in the Netherlands. Environ Pollut 54: 249274.
  • Caporaso JG, Kuczynski J, Stombaugh J et al. (2010a) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7: 335336.
  • Caporaso JG, Bittinger K, Bushman FD, DeSantis TZ, Andersen GL & Knight R (2010b) PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics 26: 266267.
  • Chen C, Wang AJ, Ren NQ, Lee DJ & Lai JY (2009a) High-rate denitrifying sulfide removal process in expanded granular sludge bed reactor. Bioresour Technol 100: 23162319.
  • Chen C, Wang AJ, Ren NQ, Den XL & Lee DJ (2009b) Optimal process pattern for simultaneous sulfur, nitrogen and carbon removal. Water Sci Technol 59: 833837.
  • Chen C, Ren NQ, Wang AJ, Liu LH & Lee DJ (2010) Functional consortium for denitrifying sulfide removal process. Appl Microbiol Biotechnol 86: 353358.
  • Chung J, Nerenberg R & Rittmann BE (2006a) Bio-reduction of selenate using a hydrogen-based membrane biofilm reactor. Environ Sci Technol 40: 16641671.
  • Chung J, Nerenberg R & Rittmann BE (2006b) Bio-reduction of soluble chromate using a hydrogen-based membrane biofilm reactor. Water Res 40: 16341642.
  • Chung J, Rittmann BE, Wright WF & Bowman RH (2007) Simultaneous bio-reduction of nitrate, perchlorate, selenate, chromate, arsenate, and dibromochloropropane using a hydrogen-based membrane biofilm reactor. Biodegradation 18: 199209.
  • Chung J, Krajmalnik-Brown R & Rittmann BE (2008) Bioreduction of trichloroethene using a hydrogen-based membrane biofilm reactor. Environ Sci Technol 42: 477483.
  • Church MJ (2008) Resource control of bacterial dynamics in the sea. Microbial Ecology in the Oceans, 2nd edn (Kirchman DL, ed.), pp. 335382. Wiley & Sons, Hoboken, NJ.
  • Coates JD, Ellis DJ, Gaw CV & Lovley DR (1999) Geothrix fermentans gen. nov., sp. nov., a novel Fe(III)-reducing bacterium from a hydrocarbon-contaminated aquifer. Int J Sys Bacteriol 49: 16151622.
  • Dalsgaard T & Bak F (1994) Nitrate reduction in a sulfate-reducing bacterium, Desulfovibrio desulfuricans, isolated from rice paddy soil: sulfide inhibition, kinetics, and regulation. Appl Environ Microbiol 60: 291297.
  • DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P & Andersen GL (2006) Greengenes, a chimera-checked 16s rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72: 50695072.
  • Dilling W & Cypionka H (1990) Aerobic respiration in sulfate-reducing bacteria. FEMS Microbiol Lett 71: 123128.
  • Drake HL, Kusel K & Matthies C (2002) Ecological consequences of the phylogenetic and physiological diversities of acetogens. Antonie Van Leeuwenhoek 81: 203213.
  • Edgar RC (2010) Search and clustering orders of magnitude faster than blast. Bioinformatics 26: 24602461.
  • Faith DP (1992) Conservation evaluation and phylogenetic diversity. Biol Conserv 61: 110.
  • Fields MW, Bagwell CE, Carroll SL, Yan T, Liu X, Watson DB, Jardine PM, Criddle CS, Hazen TC, Zhou J (2006) Phylogenetic and functional biomakers as indicators of bacterial community responses to mixed-waste contamination. Environ Sci Technol 40: 26012607.
  • Garcia de Lomas J, Corzo A, Gonzalez JM, Andrades JA, Iglesias E & Montero MJ (2005) Nitrate promotes biological oxidation of sulfide in wastewaters: experiment at plant scale. Biotechnol Bioeng 4: 801811.
  • van Ginkel SW, Lamendella R, Kovacik WP Jr, Santo Domingo JW & Rittmann BE (2010) Microbial community structure during nitrate and perchlorate reduction in ion-exchange brine using the hydrogen-based membrane biofilm reactor (MBfR). Bioresource Technol 101: 37473750.
  • Gu B, Wu W-M, Ginder-Vogel MA, Yan H, Fields MW, Zhou J, Fendorf S, Criddle CS & Jardine P (2005) Bioreduction of uranium in a contaminated soil column. Environ Sci Technol 39: 48414847.
  • Haas BJ, Gevers D, Earl AM et al. (2011) Chimeric 16s rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Res 21: 494504.
  • Kindaichi T, Ito T & Okabe S (2004) Ecophysiological interaction between nitrifying bacteria and heterotrophic bacteria in autotrophic nitrifying biofilms as determined by microautoradiography fluorescence in situ hybridization. Appl Environ Microbiol 70: 16411650.
  • Knowles R (1982) Denitrification. Microbiol Rev 46: 4370.
  • Lee KC & Rittmann BE (2002) Applying a novel autohydrogenotrophic hollow-fiber membrane biofilm reactor for denitrification of drinking water. Water Res 36: 20402052.
  • Li G, Park S, Kang D, Krajmalnik-Brown R & Rittmann BE (2011) 2-4-5 Trichlorophenol degradation using a novel TiO2-coated biofilm carrier: roles of adsorption, photocatalysis, and biodegradation. Environ Sci Technol 45: 83598367.
  • Lovett GM (1994) Atmospheric deposition of nutrients and pollutants in North America: an ecological perspective. Ecol Appl 4: 629650.
  • Lozupone C, Hamady M & Knight R (2006) UniFrac - an online tool for comparing microbial community diversity in a phylogenetic context. BMC Bioinformatics 7: 371385.
  • Marschall C, Frenzel P & Cypionka H (1993) Influence of oxygen on sulfate-reduction and growth of sulfate-reducing bacteria. Arch Microbiol 159: 168173.
  • Mateju V, Cizinska S, Krejci J & Janoch T (1992) Biological water denitrification – a review. Enzyme Microb Technol 14: 170183.
  • Matsuzaka E, Nomura N, Maseda H, Otagaki H, Nakajima-Kambe T, Nakahara T & Uchiyama H (2003) Participation of nitrite reductase in conversion of NO2- to NO3- in a heterotrophic nitrifier, Burkholderia cepacia NH-17, with denitrification activity. Microbes Environ 18: 203209.
  • Merkey BV, Rittmann BE & Chopp DL (2009) Modeling how soluble microbial products (SMP) support heterotrophs in autotroph-based biofilms. J Theor Biol 259: 670683.
  • Mohanakrishnan J, Wegener Kofoed MV, Barr J, Yuan Z, Schramm A & Louise Meyer R (2011) Dynamic microbial response of sulfidogenic wastewater biofilm to nitrate. Appl Microbiol Biotechnol 91: 16471657.
  • Moura JG, Gonzalez P, Moura I & Fauque G (2007) Dissimilatory nitrate and nitrite ammonification by sulphate-reducing eubacteria. Sulphate-reducing Bacteria. Environmental and Engineered Systems (Barton LL & Hamilton WA, eds), pp. 241264. Cambridge University Press, New York.
  • Muyzer G & Stams AJM (2008) The ecology and biotechnology of sulphate-reducing bacteria. Nat Rev Microbiol 6: 441454.
  • Nagata T (2008) Organic matter bacteria interactions in seawater. Microbial Ecology in the Oceans, 2nd edn (Kirchman DL, ed.), pp. 207242. Wiley & Sons, Hoboken, NJ.
  • Nerenberg R & Rittmann BE (2002) Perchlorate as a secondary substrate in a denitrifying hollow-fiber membrane biofilm reactor. Water Sci Technol 2: 259265.
  • Nerenberg R, Kawagoshi Y & Rittmann BE (2008) Microbial ecology of a hydrogen-based membrane biofilm reactor reducing perchlorate in the presence of nitrate or oxygen. Water Res 42: 11511159.
  • Ni B-J, Rittmann BE & Yu H-Q (2011) Soluble microbial products and their implications in mixed culture biotechnology. Trends Biotechnol 29: 254263.
  • Ontiveros-Valencia A, Ziv-El M, Zhao H, Feng L, Rittmann BE & Krajmalnik-Brown R (2012) Interactions between nitrate-reducing and sulfate-reducing bacteria coexisting in a hydrogen-fed biofilm. Environ Sci Technol 46: 1128911298.
  • Payne WJ (1973) Reduction of nitrogenous oxides by microorganisms. Bacteriol Rev 37: 409452.
  • Payne W (1981) Denitrification. Wiley, New York, NY, pp. 214.
  • Peck HD Jr (1959) The ATP-dependent reduction of sulfate with hydrogen in extracts of Desulfovibrio desulfuricans. P Natl Acad Sci USA 45: 701708.
  • Price MN, Dehal PS & Arkin AP (2009) FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol 26: 16411650.
  • Reyes-Avila J, Razo-Flores E & Gomez J (2004) Simultaneous biological removal of nitrogen, carbon and sulfur by denitrification. Water Res 38: 33133321.
  • Rittmann BE & McCarty PL (2001) Environmental Biotechnology: Principles and Applications. McGraw-Hill Companies, Inc, New York.
  • Saunders NFW, Ferguson SJ & Baker SC (2000) Transcriptional analysis of the nirS gene, encoding cytochrome cd1 nitrite reductase, of Paracoccus pantotrophus LMD 92.63. Microbiology 146: 509516.
  • Shao M-F, Zhang T & Han-Ping Fang H (2010) Sulfur-driven autotrophic denitrification: diversity, biochemistry, and engineering applications. Appl Microbiol Biotechnol 88: 10271042.
  • Sun Y, Wolcott RD & Dowd SE (2011) Tag-encoded FLX amplicon pyrosequencing for the elucidation of microbial and functional gene diversity in any environment. High-Throughput Next Generation Sequencing. Methods Mol Biol 733: 129141.
  • Tang Y, Ontiveros-Valencia A, Liang F, Zhou C, Krajmalnik-Brown R & Rittmann BE (2012a) A model to understand the onset of sulfate reduction in denitrifying membrane biofilm reactors. Biotechnol Bioeng 100: 763772. DOI: 10.1002/bit.24755.
  • Tang Y, Zhou C, van Ginkel S, Ontiveros-Valencia A, Shin J & Rittmann BE (2012b) Hydrogen-Permeation Coefficients of the Fibers Used in H2-Based Membrane Biofilm Reactors. J Membrane Sci 407-408: 176183.
  • US Environmental Protection Agency (2011) Sulfate in drinking water. Retrieved on February 19, 2012 from http://water.epa.gov/drink/contaminants/unregulated/sulfate.cfm
  • US Environmental Protection Agency (2012) Basic information about nitrate in drinking water. Retrieved on February 19, 2012 from: http://water.epa.gov/drink/contaminants/basicinformation/nitrate.cfm
  • Wang Q, Garrity GM, Tiedje JM & Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73: 52615267.
  • Widdel F & Hansen TA (1991) The dissimilatory sulfate-and sulfur-reducing bacteria. The Prokaryotes, 2nd edn (Balows A, Trüper HG, Dworking M, Harder W & Schleifer K-H, eds), pp. 583616. Springer-Verlag, New York, NY.
  • Yoshida M, Ishii S, Otsuka S & Senoo K (2010) nirK-Harboring denitrifiers are more responsive to denitrification inducing conditions in rice paddy soil than nirS-Harboring bacteria. Microbes Environ 25: 4548.
  • Zhang H, Ziv-El M, Rittmann BE & Krajmalnik-Brown R (2010) Effect of dechlorination and sulfate reduction on the microbial community structure in denitrifying membrane-biofilm reactors. Environ Sci Technol 44: 51595164.
  • Zhao H, van Ginkel S, Tang Y, Kang D-W, Rittmann BE & Krajmalnik-Brown R (2011) Interactions between perchlorate and nitrate reductions in the biofilm of a hydrogen-based membrane biofilm reactor. Environ Sci Technol 45: 1015510162.
  • Ziv-El M & Rittmann BE (2009) Systematic evaluation of nitrate and perchlorate bioreduction kinetics in groundwater using a hydrogen-based membrane biofilm reactor. Water Res 43: 173181.
  • Ziv-El M, Popat SC, Kai C, Halden RU, Krajmalnik-Brown R & Rittmann BE (2012) Managing methanogens and homoacetogens to promote reductive dechlorination of trichloroethene with direct delivery of H2 in a membrane biofilm reactor. Biotechnol Bioeng 109: 22002210.