SEARCH

SEARCH BY CITATION

References

  • Agata N, Ohta M, Arakawa Y & Mori M (1995) The bceT gene of Bacillus cereus encodes an enterotoxic protein. Microbiology 141: 983988.
  • Agata N, Ohta M & Yokoyama K (2002) Production of Bacillus cereus emetic toxin (cereulide) in various foods. Int J Food Microbiol 73: 2327.
  • Altayar M & Sutherland AD (2006) Bacillus cereus is common in the environment but emetic toxin producing isolates are rare. J Appl Microbiol 100: 714.
  • Andersson A, Granum PE & Ronner U (1998) The adhesion of Bacillus cereus spores to epithelial cells might be an additional virulence mechanism. Int J Food Microbiol 39: 9399.
  • Andersson MA, Jaaskelainen EL, Shaheen R, Pirhonen T, Wijnands LM & Salkinoja-Salonen MS (2004) Sperm bioassay for rapid detection of cereulide-producing Bacillus cereus in food and related environments. Int J Food Microbiol 94: 175183.
  • Andersson T, Nilsson C, Kjellin E, Toljander J, Welinder-Olsson C & Lindmark H (2011) Modeling gene associations for virulence classification of verocytotoxin-producing E. coli (VTEC) from patients and beef. Virulence 2: 4153.
  • Ankolekar C, Rahmati T & Labbe RG (2009) Detection of toxigenic Bacillus cereus and Bacillus thuringiensis spores in US rice. Int J Food Microbiol 128: 460466.
  • Apetroaie C, Andersson MA, Sproer C, Tsitko I, Shaheen R, Jaaskelainen EL, Wijnands LM, Heikkila R & Salkinoja-Salonen MS (2005) Cereulide-producing strains of Bacillus cereus show diversity. Arch Microbiol 184: 141151.
  • Asano SI, Nukumizu Y, Bando H, Iizuka T & Yamamoto T (1997) Cloning of novel enterotoxin genes from Bacillus cereus and Bacillus thuringiensis. Appl Environ Microbiol 63: 10541057.
  • Baron F, Cochet MF, Grosset N, Madec MN, Briandet R, Dessaigne S, Chevalier S, Gautier M & Jan S (2007) Isolation and characterization of a psychrotolerant toxin producer, Bacillus weihenstephanensis, in liquid egg products. J Food Prot 70: 27822791.
  • Beecher DJ & Wong ACL (2000) Cooperative, synergistic and antagonistic haemolytic interactions between haemolysin BL, phosphatidylcholine phospholipase C and sphingomyelinase from Bacillus cereus. Microbiology 146: 30333039.
  • Beecher DJ, Schoeni JL & Wong ACL (1995) Enterotoxic activity of hemolysin BL from Bacillus cereus. Infect Immun 63: 44234428.
  • Beecher DJ, Olsen TW, Somers EB & Wong ACL (2000) Evidence for contribution of tripartite hemolysin BL, phosphatidylcholine-preferring phospholipase C, and collagenase to virulence of Bacillus cereus endophthalmitis. Infect Immun 68: 52695276.
  • Bizani D, Motta AS, Morrissy JAC, Terra RMS, Souto AA & Brandelli A (2005) Antibacterial activity of cerein 8A, a bacteriocin-like peptide produced by Bacillus cereus. Int Microbiol 8: 125131.
  • Bizzarri MF, Bishop AH, Dinsdale A & Logan NA (2008) Changes in the properties of Bacillus thuringiensis after prolonged culture in a rich medium. J Appl Microbiol 104: 6069.
  • Bottone EJ (2010) Bacillus cereus, a volatile human pathogen. Clin Microbiol Rev 23: 382398.
  • Bullied WJ, Buss TJ & Vessey JK (2002) Bacillus cereus UW85 inoculation effects on growth, nodulation, and N accumulation in grain legumes: field studies. Can J Plant Sci 82: 291298.
  • Cadot C, Tran SL, Vignaud ML, De Buyser ML, Kolsto AB, Brisabois A, Nguyen-The C, Lereclus D, Guinebretiere MH & Ramarao N (2010) InhA1, NprA, and HlyII as candidates for markers to differentiate pathogenic from nonpathogenic Bacillus cereus strains. J Clin Microbiol 48: 13581365.
  • Carlin F, Fricker M, Pielaat A, Heisterkamp S, Shaheen R, Salonen MS, Svensson B, Nguyen-The C & Ehling-Schulz M (2006) Emetic toxin producing strains of Bacillus cereus show distinct characteristics within the Bacillus cereus group. Int J Food Microbiol 109: 132138.
  • Ceuppens S, Boon N, Rajkovic A, Heyndrickx M, Van de Wiele T & Uyttendaele M (2010) Quantification methods for Bacillus cereus vegetative cells and spores in the gastrointestinal environment. J Microbiol Methods 83: 202210.
  • Ceuppens S, Rajkovic A, Heyndrickx M, Tsilia V, van de Wiele T, Boon N & Uyttendaele M (2011) Regulation of toxin production by Bacillus cereus and its food safety implications. Crit Rev Microbiol 37: 188213.
  • Ceuppens S, Rajkovic A, Hamelink S, Van de Wiele T, Boon N & Uyttendaele M (2012a) Enterotoxin production by Bacillus cereus under gastrointestinal conditions and their immunological detection by commercially available kits. Foodborne Pathog Dis, 9: 11301136.
  • Ceuppens S, Uyttendaele M, Drieskens K, Rajkovic A, Boon N & Van de Wiele T (2012b) Survival of Bacillus cereus vegetative cells and spores during in vitro simulation of gastric passage. J Food Prot 75: 690694.
  • Ceuppens S, Uyttendaele M, Hamelink S, Boon N & Van de Wiele W (2012c) Inactivation of Bacillus cereus vegetative cells by gastric acid and bile during in vitro gastrointestinal transit. Gut Pathog 4: 11.
  • Ceuppens S, Uyttendaele M, Drieskens K, Heyndrickx M, Rajkovic A, Boon N & Van de Wiele T (2012d) Survival and germination of Bacillus cereus spores during in vitro simulation of gastrointestinal transit occurred without outgrowth and enterotoxin production. Appl Environ Microbiol 78: 76987705.
  • Ceuppens S, Van de Wiele T, Rajkovic A, Ferrer-Cabaceran T, Heyndrickx M, Boon N & Uyttendaele M (2012e) Impact of intestinal microbiota and gastrointestinal conditions on the in vitro survival and growth of Bacillus cereus. Int J Food Microbiol 155: 241246.
  • Chang HJ, Lee JH, Han BR, Kwak TK & Kim J (2011) Prevalence of the levels of Bacillus cereus in fried rice dishes and its exposure assessment from Chinese-style restaurants. Food Sci Biotechnol 20: 13511359.
  • Choma C, Guinebretiere MH, Carlin F, Schmitt P, Velge P, Granum PE & Nguyen-The C (2000) Prevalence, characterization and growth of Bacillus cereus in commercial cooked chilled foods containing vegetables. J Appl Microbiol 88: 617625.
  • Clair G, Roussi S, Armengaud J & Duport C (2010) Expanding the known repertoire of virulence factors produced by Bacillus cereus through early secretome profiling in three redox conditions. Mol Cell Proteomics 9: 14861498.
  • Clarkston WK, Pantano MM, Morley JE, Horowitz M, Littlefield JM & Burton FR (1997) Evidence for the anorexia of aging: gastrointestinal transit and hunger in healthy elderly vs young adults. Am J Physiol Regul Integr Comp Physiol 41: R243R248.
  • Clavel T, Carlin F, Lairon D, Nguyen-The C & Schmitt P (2004) Survival of Bacillus cereus spores and vegetative cells in acid media simulating human stomach. J Appl Microbiol 97: 214219.
  • Clavel T, Carlin F, Dargaignaratz C, Lairon D, Nguyen-The C & Schmitt P (2007) Effects of porcine bile on survival of Bacillus cereus vegetative cells and haemolysin BL enterotoxin production in reconstituted human small intestine media. J Appl Microbiol 103: 15681575.
  • De Jonghe V, Coorevits A, De Block J, Van Coillie E, Grijspeerdt K, Herman L, De Vos P & Heyndrickx M (2010) Toxinogenic and spoilage potential of aerobic spore-formers isolated from raw milk. Int J Food Microbiol 136: 318325.
  • Dommel MK, Lucking G, Scherer S & Ehling-Schulz M (2011) Transcriptional kinetic analyses of cereulide synthetase genes with respect to growth, sporulation and emetic toxin production in Bacillus cereus. Food Microbiol 28: 284290.
  • Dressman JB, Berardi RR, Dermentzoglou LC, Russell TL, Schmaltz SP, Barnett JL & Jarvenpaa KM (1990) Upper gastrointestinal (GI) pH in young, healthy men and women. Pharm Res 7: 756761.
  • EFSA (2005) Opinion of the scientific panel on biological hazards on Bacillus cereus and other Bacillus spp. in foodstuffs. EFSA J 175: 148.
  • EFSA (2012) The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2010. EFSA J 10: 2597.
  • Eglezos S, Huang BX, Dykes GA & Fegan N (2010) The prevalence and concentration of Bacillus cereus in retail food products in Brisbane, Australia. Foodborne Pathog Dis 7: 867870.
  • Ehling-Schulz M, Fricker M & Scherer S (2004) Identification of emetic toxin producing Bacillus cereus strains by a novel molecular assay. FEMS Microbiol Lett 232: 189195.
  • Ehling-Schulz M, Svensson B, Guinebretiere MH et al. (2005) Emetic toxin formation of Bacillus cereus is restricted to a single evolutionary lineage of closely related strains. Microbiology 151: 183197.
  • Ehling-Schulz M, Fricker M, Grallert H, Rieck P, Wagner M & Scherer S (2006a) Cereulide synthetase gene cluster from emetic Bacillus cereus: structure and location on a mega virulence plasmid related to Bacillus anthracis toxin plasmid pXO1. BMC Microbiol 2: 620.
  • Ehling-Schulz M, Guinebretiere MH, Monthan A, Berge O, Fricker M & Svensson B (2006b) Toxin gene profiling of enterotoxic and emetic Bacillus cereus. FEMS Microbiol Lett 260: 232240.
  • Ekman JV, Kruglov A, Andersson MA, Mikkola R, Raulio M & Salkinoja-Salonen M (2012) Cereulide produced by Bacillus cereus increases the fitness of the producer organism in low-potassium environments. Microbiology 158: 11061116.
  • Ellis RJ (2004) Artificial soil microcosms: a tool for studying microbial autecology under controlled conditions. J Microbiol Methods 56: 287290.
  • Fagerlund A, Ween A, Lund T, Hardy SP & Granum PE (2004) Genetic and functional analysis of the cytK family of genes in Bacillus cereus. Microbiology 150: 26892697.
  • Fagerlund A, Brillard J, Furst R, Guinebretiere MH & Granum PE (2007) Toxin production in a rare and genetically remote cluster of strains of the Bacillus cereus group. Microbiology 7:43. http://www.biomedcentral.com/1471-2180/7/43, Accessed on 18 March 2010.
  • Fagerlund A, Lindback T, Storset AK, Granum PE & Hardy SP (2008) Bacillus cereus Nhe is a pore-forming toxin with structural and functional properties similar to the ClyA (HIyE, SheA) family of haemolysins, able to induce osmotic lysis in epithelia. Microbiology 154: 693704.
  • Firth JD, Putnins EE, Larjava H & Uitto VJ (1997) Bacterial phospholipase C upregulates matrix metalloproteinase expression by cultured epithelial cells. Infect Immun 65: 49314936.
  • Fricker M, Messelhausser U, Busch U, Scherer S & Ehling-Schulz M (2007) Diagnostic real-time PCR assays for the detection of emetic Bacillus cereus strains in foods and recent food-borne outbreaks. Appl Environ Microbiol 73: 18921898.
  • Fricker M, Reissbrodt R & Ehling-Schulz M (2008) Evaluation of standard and new chromogenic selective plating media for isolation and identification of Bacillus cereus. Int J Food Microbiol 121: 2734.
  • Gao XA, Ju WT, Jung WJ & Park RD (2008) Purification and characterization of chitosanase from Bacillus cereus D-11. Carbohydr Polym 72: 513520.
  • Ghosh AC (1978) Prevalence of Bacillus cereus in feces of healthy adults. J Hyg 80: 233236.
  • te Giffel MC, Beumer RR, Klijn N, Wagendorp A & Rombouts FM (1997) Discrimination between Bacillus cereus and Bacillus thuringiensis using specific DNA probes based on variable regions of 16S rRNA. FEMS Microbiol Lett 146: 4751.
  • Gillor O, Giladi I & Riley MA (2009) Persistence of colicinogenic Escherichia coli in the mouse gastrointestinal tract. BMC Microbiol 12: 9156.
  • Gilois N, Ramarao N, Bouillaut L, Perchat S, Aymerich S, Nielsen-Leroux C, Lereclus D & Gohar M (2007) Growth-related variations in the Bacillus cereus secretome. Proteomics 7: 17191728.
  • Gohar M, Okstad OA, Gilois N, Sanchis V, Kolsto AB & Lereclus D (2002) Two-dimensional electrophoresis analysis of the extracellular proteome of Bacillus cereus reveals the importance of the PlcR regulon. Proteomics 2: 784791.
  • Gohar M, Faegri K, Perchat S, Ravnum S, Okstad OA, Gominet M, Kolsto AB & Lereclus D (2008) The PlcR virulence regulon of Bacillus cereus. PLoS ONE 3, http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0002793, Accessed on 1 July 2010.
  • Granum PE & Lund T (1997) Bacillus cereus and its food poisoning toxins. FEMS Microbiol Lett 157: 223228.
  • Granum PE, Brynestad S, O'Sullivan K & Nissen K (1993) Enterotoxin from Bacillus cereus: production and biochemical characterization. Neth Milk Dairy J 47: 6370.
  • Granum PE, O'Sullivan K & Lund T (1999) The sequence of the non-haemolytic enterotoxin operon from Bacillus cereus. FEMS Microbiol Lett 177: 225229.
  • Guinebretiere MH & Nguyen-The C (2003) Sources of Bacillus cereus contamination in a pasteurized zucchini puree processing line, differentiated by two PCR-based methods. FEMS Microbiol Ecol 43: 207215.
  • Guinebretiere MH, Broussolle V & Nguyen-The C (2002) Enterotoxigenic profiles of food-poisoning and food-borne Bacillus cereus strains. J Clin Microbiol 40: 30533056.
  • Guinebretiere MH, Girardin H, Dargaignaratz C, Carlin F & Nguyen-The C (2003) Contamination flows of Bacillus cereus and spore-forming aerobic bacteria in a cooked, pasteurized and chilled zucchini puree processing line. Int J Food Microbiol 82: 223232.
  • Guinebretiere MH, Fagerlund A, Granum PE & Nguyen-The C (2006) Rapid discrimination of cytK-1 and cytK-2 genes in Bacillus cereus strains by a novel duplex PCR system. FEMS Microbiol Lett 259: 7480.
  • Guinebretiere MH, Thompson FL, Sorokin A et al. (2008) Ecological diversification in the Bacillus cereus Group. Environ Microbiol 10: 851865.
  • Guinebretiere MH, Velge P, Couvert O, Carlin F, Debuyser ML & Nguyen-The C (2010) Ability of Bacillus cereus group strains to cause food poisoning varies according to phylogenetic affiliation (Groups I to VII) rather than species affiliation. J Clin Microbiol 48: 33883391.
  • Guinebretiere MH, Auger S, Galleron N et al. (2013) Bacillus cytotoxicus sp. nov. is a new thermotolerant species of the Bacillus cereus Group occasionally associated with food poisoning. Int J Syst Evol Microbiol 63: 3140.
  • Haggblom MM, Apetroaie C, Andersson MA & Salkinoja-Salonen MS (2002) Quantitative analysis of cereulide, the emetic toxin of Bacillus cereus, produced under various conditions. Appl Environ Microbiol 68: 24792483.
  • Handelsman J, Raffel S, Mester EH, Wunderlich L & Grau CR (1990) Biological control of damping-off of Alfalfa seedlings with Bacillus cereus Uw85. Appl Environ Microbiol 56: 713718.
  • Hansen BM & Hendriksen NB (2001) Detection of enterotoxic Bacillus cereus and Bacillus thuringiensis strains by PCR analysis. Appl Environ Microbiol 67: 185189.
  • Hardy SP, Lund T & Granum PE (2001) CytK toxin of Bacillus cereus forms pores in planar lipid bilayers and is cytotoxic to intestinal epithelia. FEMS Microbiol Lett 197: 4751.
  • Helgason E, Okstad OA, Caugant DA, Johansen HA, Fouet A, Mock M, Hegna I & Kolsto AB (2000) Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis – one species on the basis of genetic evidence. Appl Environ Microbiol 66: 26272630.
  • Hernandez E, Ramisse F, Ducoureau JP, Cruel T & Cavallo JD (1998) Bacillus thuringiensis subsp. konkukian (serotype H34) superinfection: case report and experimental evidence of pathogenicity in immunosuppressed mice. J Clin Microbiol 36: 21382139.
  • Horwood PF, Burgess GW & Oakey HJ (2004) Evidence for non-ribosomal peptide synthetase production of cereulide (the emetic toxin) in Bacillus cereus. FEMS Microbiol Lett 236: 319324.
  • Hoton FM, Fornelos N, N'Guessan E, Hu XM, Swiecicka I, Dierick K, Jaaskelainen E, Salkinoja-Salonen M & Mahillon J (2009) Family portrait of Bacillus cereus and Bacillus weihenstephanensis cereulide-producing strains. Environ Microbiol Rep 1: 177183.
  • Ivanova N, Sorokin A, Anderson I et al. (2003) Genome sequence of Bacillus cereus and comparative analysis with Bacillus anthracis. Nature 423: 8791.
  • Jaaskelainen EL, Haggblom MM, Andersson MA, Vanne L & Salkinoja-Salonen MS (2003) Potential of Bacillus cereus for producing an emetic toxin, cereulide, in bakery products: quantitative analysis by chemical and biological methods. J Food Prot 66: 10471054.
  • Jaaskelainen EL, Haggblom MM, Andersson MA & Salkinoja-Salonen MS (2004) Atmospheric oxygen and other conditions affecting the production of cereulide by Bacillus cereus in food. Int J Food Microbiol 96: 7583.
  • Jackson SG, Goodbrand RB, Ahmed R & Kasatiya S (1995) Bacillus cereus and Bacillus thuringiensis isolated in a gastroenteritis outbreak investigation. Lett Appl Microbiol 21: 103105.
  • Jernberg C, Lofmark S, Edlund C & Jansson JK (2007) Long-term ecological impacts of antibiotic administration on the human intestinal microbiota. ISME J 1: 5666.
  • Kalman S, Kiehne KL, Libs JL & Yamamoto T (1993) Cloning of a novel Cryic-type gene from a strain of Bacillus thuringiensis subsp. galleriae. Appl Environ Microbiol 59: 11311137.
  • Kim HJ, Lee DS & Paik HD (2004) Characterization of Bacillus cereus isolates from raw soybean sprouts. J Food Prot 67: 10311035.
  • Kim JB, Kim JM, Kim SY, Kim JH, Park YB, Choi NJ & Oh DH (2010) Comparison of enterotoxin production and phenotypic characteristics between emetic and enterotoxic Bacillus cereus. J Food Prot 73: 12191224.
  • Koch R (1878) Die Aetiologie der Milzbrand-Krankheit bergundet auf die Entwicklungsgeschichte des Bacillus anthracis. Beitr Biol Pflazen 2: 277311.
  • Lahner E, Annibale B & Fave GD (2009) Systematic review: Heliocobacter pylori infection and impaired drug absorption. Aliment Pharmacol Ther 29: 379386.
  • Langeveld LPM, van Spronsen WA, van Beresteijn ECH & Notermans SHW (1996) Consumption by healthy adults of pasteurized milk with a high concentration of Bacillus cereus: a double-blind study. J Food Prot 59: 723726.
  • Lechner S, Mayr R, Francis KP, Pruss BM, Kaplan T, Wiessner-Gunkel E, Stewartz GSAB & Scherer S (1998) Bacillus weihenstephanensis sp. nov. is a new psychrotolerant species of the Bacillus cereus group. Int J Syst Bacteriol 48: 13731382.
  • Lindbäck T, Fagerlund A, Rodland MS & Granum PE (2004) Characterization of the Bacillus cereus Nhe enterotoxin. Microbiology 150: 39593967.
  • Lund T, De Buyser ML & Granum PE (2000) A new cytotoxin from Bacillus cereus that may cause necrotic enteritis. Mol Microbiol 38: 254261.
  • Luo Y, Vilain S, Voigt B, Albrecht D, Hecker M & Brozel VS (2007) Proteomic analysis of Bacillus cereus growing in liquid soil organic matter. FEMS Microbiol Lett 271: 4047.
  • Luxananil P, Butrapet S, Atomi H, Imanaka T & Panyim S (2003) A decrease in cytotoxic and haemolytic activities by inactivation of a single enterotoxin gene in Bacillus cereus Cx5. World J Microbiol Biotechnol 19: 831837.
  • Marciani L, Gowland PA, Spiller RC, Manoj P, Moore RJ, Young P & Fillery-Travis AJ (2001) Effect of meal viscosity and nutrients on satiety, intragastric dilution, and emptying assessed by MRI. Am J Physiol Gastrointest Liver Physiol 280: G1227G1233.
  • Margulis L, Jorgensen JZ, Dolan S, Kolchinsky R, Rainey FA & Lo SC (1998) The Arthromitus stage of Bacillus cereus: intestinal symbionts of animals. P Natl Acad Sci USA 95: 12361241.
  • Martinez-Blanch JF, Sanchez G, Garay E & Aznar R (2009) Development of a real-time PCR assay for detection and quantification of enterotoxigenic members of Bacillus cereus group in food samples. Int J Food Microbiol 135: 1521.
  • Marzorati M, Van den Abbeele P, Possemiers S, Benner J, Verstraete W & Van de Wiele T (2011) Studying the host-microbiota interaction in the human gastrointestinal tract: basic concepts and in vitro approaches. Ann Microbiol 61: 709715.
  • Maughan H & Van der Auwera G (2011) Bacillus taxonomy in the genomic era finds phenotypes to be essential though often misleading. Infect Genet Evol 11: 789797.
  • Messelhausser U, Kampf P, Fricker M, Ehling-Schulz M, Zucker R, Wagner B, Busch U & Holler C (2010) Prevalence of emetic Bacillus cereus in different ice creams in Bavaria. J Food Prot 73: 395399.
  • Milner JL, Raffel SJ, Lethbridge BJ & Handelsman J (1995) Culture conditions that influence accumulation of zwittermicin A by Bacillus cereus Uw85. Appl Microbiol Biotechnol 43: 685691.
  • Minnaard J, Humen M & Perez PF (2001) Effect of Bacillus cereus exocellular factors on human intestinal epithelial cells. J Food Prot 64: 15351541.
  • Mock M & Fouet A (2001) Anthrax. Annu Rev Microbiol 55: 647671.
  • Modrie P, Beuls E & Mahillon J (2010) Differential transfer dynamics of pAW63 plasmid among members of the Bacillus cereus group in food microcosms. J Appl Microbiol 108: 888897.
  • Moravek M, Dietrich R, Buerk C, Broussolle V, Guinebretiere MH, Granum PE, Nguyen-The C & Martlbauer E (2006) Determination of the toxic potential of Bacillus cereus isolates by quantitative enterotoxin analyses. FEMS Microbiol Lett 257: 293298.
  • Munoz A, Maqueda M, Galvez A, Martinez-Bueno M, Rodriguez A & Valdivia E (2004) Biocontrol of psychrotrophic enterotoxigenic Bacillus cereus in a nonfat hard cheese by an enterococcal strain-producing enterocin AS-48. J Food Prot 67: 15171521.
  • Munoz A, Ananou S, Galvez A, Martinez-Bueno M, Rodriguez A, Maqueda M & Valdivia E (2007) Inhibition of Staphylococcus aureus in dairy products by enterocin AS-48 produced in situ and ex situ: bactericidal synergism with heat. Int Dairy J 17: 760769.
  • Nakamura LK & Jackson MA (1995) Clarification of the taxonomy of Bacillus mycoides. Int J Syst Bacteriol 45: 4649.
  • Nakano S, Maeshima H, Matsumura A, Ohno K, Ueda S, Kuwabara Y & Yamada T (2004) A PCR assay based on a sequence-characterized amplified region marker for detection of emetic Bacillus cereus. J Food Prot 67: 16941701.
  • Naranjo SE & Ellsworth PC (2010) Fourteen years of Bt cotton advances IPM in Arizona. Southwest Entomol 35: 437444.
  • Ngamwongsatit P, Buasri W, Pianariyanon P, Pulsrikarn C, Ohba M, Assavanig A & Panbangred W (2008) Broad distribution of enterotoxin genes (hblCDA, nheABC, cytK, and entFM) among Bacillus thuringiensis and Bacillus cereus as shown by novel primers. Int J Food Microbiol 121: 352356.
  • O'Connor EM & Shand RF (2002) Halocins and sulfolobicins: the emerging story of archaeal protein and peptide antibiotics. J Ind Microbiol Biotechnol 28: 2331.
  • Ouhib-Jacobs O, Lindley ND, Schmitt P & Clavel T (2009) Fructose and glucose mediates enterotoxin production and anaerobic metabolism of Bacillus cereus ATCC14579(T). J Appl Microbiol 107: 821829.
  • Palmer C, Bik EM, DiGiulio DB, Relman DA & Brown PO (2007) Development of the human infant intestinal microbiota. PLoS Biol 5: 15561573.
  • Park CN, Lee JM, Lee D & Kim BS (2008) Antifungal activity of valinomycin, a peptide antibiotic produced by Streptomyces sp strain M10 antagonistic to Botrytis cinerea. J Microbiol Biotechnol 18: 880884.
  • Park YB, Kim JB, Shin SW, Kim JC, Cho SH, Lee BK, Ahn J, Kim JM & Oh DH (2009) Prevalence, genetic diversity, and antibiotic susceptibility of Bacillus cereus strains isolated from rice and cereals collected in Korea. J Food Prot 72: 612617.
  • Pimentel-Elardo SM, Kozytska S, Bugni TS, Ireland CM, Moll H & Hentschel U (2010) Anti-parasitic compounds from Streptomyces sp strains isolated from Mediterranean sponges. Mar Drugs 8: 373380.
  • Pirhonen TI, Andersson MA, Jaaskelainen EL, Salkinoja-Salonen MS, Honkanen-Buzalski T & Johansson TML (2005) Biochemical and toxic diversity of Bacillus cereus in a pasta and meat dish associated with a food-poisoning case. Food Microbiol 22: 8791.
  • Posfay-Barbe KM, Schrenzel J, Frey J, Studer R, Kroff C, Belli DC, Parvex P, Rimensberger PC & Schappi MG (2008) Food poisoning as a cause of acute liver failure. Pediatr Infect Dis J 27: 846847.
  • Rahmati T & Labbe R (2008) Levels and toxigenicity of Bacillus cereus and Clostridium perfringens from retail seafood. J Food Prot 71: 11781185.
  • Rajkovic A, Uyttendaele M, Deley W, Van Soom A, Rijsselaere T & Debevere J (2006a) Dynamics of boar semen motility inhibition as a semi-quantitative measurement of Bacillus cereus emetic toxin (Cereulide). J Microbiol Methods 65: 525534.
  • Rajkovic A, Uyttendaele M, Ombregt SA, Jaaskelainen E, Salkinoja-Salonen M & Debevere J (2006b) Influence of type of food on the kinetics and overall production of Bacillus cereus emetic toxin. J Food Prot 69: 847852.
  • Rajkovic A, Uyttendaele M, Vermeulen A, Andjelkovic M, Fitz-James I, in‘t Veld P, Denon Q, Verhe R & Debevere J (2008) Heat resistance of Bacillus cereus emetic toxin, cereulide. Lett Appl Microbiol 46: 536541.
  • Ramarao N & Lereclus D (2006) Adhesion and cytotoxicity of Bacillus cereus and Bacillus thuringiensis to epithelial cells are FlhA and PlcR dependent, respectively. Microbes Infect 8: 14831491.
  • Rasko DA, Altherr MR, Han CS & Ravel J (2005a) Genomics of the Bacillus cereus group of organisms. FEMS Microbiol Rev 29: 303329.
  • Rasko DA, Myers GSA & Ravel J (2005b) Visualization of comparative genomic analyses by BLAST score ratio. BMC Bioinformatics 6:2, http://www.biomedcentral.com/1471-2105/6/2, Accessed on 8 November 2010.
  • Rasmussen TB, Skindersoe ME, Bjarnsholt T et al. (2005) Identity and effects of quorum-sensing inhibitors produced by Penicillium species. Microbiology 151: 13251340.
  • Riley MA & Wertz JE (2002) Bacteriocin diversity: ecological and evolutionary perspectives. Biochimie 84: 357364.
  • Ringertz SH, Hoiby EA, Jensenius M, Maehlen J, Caugant DA, Myklebust A & Fossum K (2000) Injectional anthrax in a heroin skin-popper. Lancet 356: 15741575.
  • Russell TL, Berardi RR, Barnett JL, Dermentzoglou LC, Jarvenpaa KM, Schmaltz SP & Dressman JB (1993) Upper gastrointestinal pH in 79 healthy, elderly, North-American men and women. Pharm Res 10: 187196.
  • Ryan PA, Macmillan JD & Zilinskas BA (1997) Molecular cloning and characterization of the genes encoding the L1 and L2 components of hemolysin BL from Bacillus cereus. J Bacteriol 179: 25512556.
  • Sacchi CT, Whitney AM, Mayer LW, Morey R, Steigerwalt A, Boras A, Weyant RS & Popovic T (2002) Sequencing of 16S rRNA gene: a rapid tool for identification of Bacillus anthracis. Emerg Infect Dis 8: 11171123.
  • Samapundo S, Heyndrickx M, Xhaferi R & Devlieghere F (2011) Incidence, diversity and toxin gene characteristics of Bacillus cereus group strains isolated from food products marketed in Belgium. Int J Food Microbiol 150: 3441.
  • Saris NEL, Andersson MA, Mikkola R, Andersson LC, Teplova VV, Grigoriev PA & Salkinoja-Salonen MS (2009) Microbial toxin's effect on mitochondrial survival by increasing K(+) uptake. Toxicol Ind Health 25: 441446.
  • Schnepf E, Crickmore N, Van Rien J, Lereclus D, Baum J, Feitelson J, Zeigler DR & Dean DH (1998) Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev 62: 775806.
  • Schraft H & Griffiths MW (1995) Specific oligonucleotide primers for detection of lecithinase-positive Bacillus spp. by PRC. Appl Environ Microbiol 61: 98102.
  • Seong SJ, Lim JS, Lee KG, Lee SJ & Hong KW (2008) Toxin gene profiling of Bacillus cereus food isolates by PCR. J Korean Soc Appl Biol Chem 51: 263268.
  • Sevim A, Eryuzlu E, Demirbag Z & Demir I (2012) A novel cry2Ab gene from the indigenous isolate Bacillus thuringiensis subsp. kurstaki. J Microbiol Biotechnol 22: 133140.
  • Shinagawa K (1993) Serology and characterization of toxigenic Bacillus cereus. Neth Milk Dairy J 47: 89103.
  • Shinagawai K, Ueno Y, Hu D, Ueda S & Sugii S (1996) Mouse lethal activity of a HEp-2 vacuolation factor, cereulide, produced by Bacillus cereus isolated from vomiting-type food poisoning. J Vet Med Sci 58: 10271029.
  • Shiota M, Saitou K, Mizumoto H et al. (2010) Rapid detoxification of cereulide in Bacillus cereus food poisoning. Pediatrics 125: E951E955.
  • Silo-Suh LA, Stabb EV, Raffel SJ & Handelsman J (1998) Target range of Zwittermicin A, an aminopolyol antibiotic from Bacillus cereus. Curr Microbiol 37: 611.
  • Slamti L, Perchat S, Gominet M, Vilas-Boas G, Fouet A, Mock M, Sanchis V, Chaufaux J, Gohar M & Lereclus D (2004) Distinct mutations in PlcR explain why some strains of Bacillus cereus group are non-hemolytic. J Bacteriol 186: 35313538.
  • Stenfors LP, Mayr R, Scherer S & Granum PE (2002) Pathogenic potential of fifty Bacillus weihenstephanensis strains. FEMS Microbiol Lett 215: 4751.
  • Stenfors-Arnesen LP, Fagerlund A & Granum PE (2008) From soil to gut: Bacillus cereus and its food poisoning toxins. FEMS Microbiol Rev 32: 579606.
  • Svensson B, Monthan A, Shaheen R, Andersson MA, Salkinoja-Salonen M & Christiansson A (2006) Occurrence of emetic toxin producing Bacillus cereus in the dairy production chain. Int Dairy J 16: 740749.
  • Swiecicka I & Mahillon J (2006) Diversity of commensal Bacillus cereus sensu lato isolated from the common sow bug (Porcellio scaber, Isopoda). FEMS Microbiol Ecol 56: 132140.
  • Swiecicka I, Bideshi DK & Federici BA (2008) Novel isolate of Bacillus thuringiensis subsp thuringiensis that produces a quasicuboidal crystal of Cry1Ab21 toxic to larvae of Trichoplusia ni. Appl Environ Microbiol 74: 923930.
  • Tempelaars MH, Rodrigues S & Abee T (2011) Comparative analysis of antimicrobial activities of valinomycin and cereulide, the Bacillus cereus emetic toxin. Appl Environ Microbiol 77: 27552762.
  • Thaenthanee S, Wong ACL & Panbangred W (2005) Phenotypic and genotypic comparisons reveal a broad distribution and heterogeneity of hemolysin BL genes among Bacillus cereus isolates. Int J Food Microbiol 105: 203212.
  • Thorsen L, Hansen BM, Nielsen KF, Hendriksen NB, Phipps RK & Budde BB (2006) Characterization of emetic Bacillus weihenstephanensis, a new cereulide-producing bacterium. Appl Environ Microbiol 72: 51185121.
  • Tran SL, Guillemet E, Gohar M, Lereclus D & Ramarao N (2010) CwpFM (EntFM) is a Bacillus cereus potential cell wall peptidase implicated in adhesion, biofilm formation, and virulence. J Bacteriol 192: 26382642.
  • Turnbull PC & Kramer JM (1985) Intestinal carriage of Bacillus cereus – fecal isolation studies in 3 population groups. J Hyg 95: 629638.
  • Turnbull PC, Kramer JM, Jorgensen K, Gilbert RJ & Melling J (1979) Properties and production characteristics of vomiting, diarrheal, and necrotizing toxins of Bacillus cereus. Am J Clin Nutr 32: 219228.
  • Vakevainen S, Tillonen J, Salaspuro M, Jousimies-Somer H, Nuutinen H & Farkkila M (2000) Hypochlorhydria induced by a proton pump inhibitor leads to intragastric microbial production of acetaldehyde from ethanol. Aliment Pharmacol Ther 14: 15111518.
  • Van den Abbeele P, Roos S, Eeckhaut V et al. (2012) Incorporating a mucosal environment in a dynamic gut model results in a more representative colonization by lactobacilli. Microb Biotechnol 5: 106115.
  • Van der Auwera GA, Timmery S, Hoton F & Mahillon J (2007) Plasmid exchanges among members of the Bacillus cereus group in foodstuffs. Int J Food Microbiol 113: 164172.
  • Vassileva M, Torii K, Oshimoto M, Okamoto A, Agata N, Yamada K, Hasegawa T & Ohta M (2007) A new phylogenetic cluster of cereulide-producing Bacillus cereus strains. J Clin Microbiol 45: 12741277.
  • Vilain S, Luo Y, Hildreth MB & Brözel VS (2006) Analysis of the life cycle of the soil saprophyte Bacillus cereus in liquid soil extract and in soil. Appl Environ Microbiol 72: 49704977.
  • Wang RF, Cao WW & Cerniglia CE (1997) A universal protocol for PCR detection of 13 species of foodborne pathogens in foods. J Appl Microbiol 83: 727736.
  • Wazny TK, Mummaw N & Styrt B (1990) Degranulation of human neutrophils after exposure to bacterial phospholipase C. Eur J Clin Microbiol Infect Dis 9: 830832.
  • Wehrle E, Didier A, Moravek M, Dietrich R & Martlbauer E (2010) Detection of Bacillus cereus with enteropathogenic potential by multiplex real-time PCR based on SYBR green I. Mol Cell Probes 24: 124130.
  • Wijnands LM, Dufrenne JB & van Leusden FM (2005) RIVM report 250912003/2005 Bacillus cereus: characteristics, behaviour in the gastro-intestinal tract, and interaction with Caco-2 cells. Report from RIVM (National Institute for Public Health and the Environment "Rijksinstituut voor Volksgezondheid en Milieu" in the Netherlands), available online at http://www.rivm.nl/bibliotheek/rapporten/250912003.pdf
  • Wijnands LM, Dufrenne JB, Rombouts FM, In't Veld PH & Van Leusden FM (2006a) Prevalence of potentially pathogenic Bacillus cereus in food commodities in The Netherlands. J Food Prot 69: 25872594.
  • Wijnands LM, Dufrenne JB, Zwietering MH & van Leusden FM (2006b) Spores from mesophilic Bacillus cereus strains germinate better and grow faster in simulated gastro-intestinal conditions than spores from psychrotrophic strains. Int J Food Microbiol 112: 120128.
  • Wijnands LM, Dufrenne JB, van Leusden FM & Abee T (2007) Germination of Bacillus cereus spores is induced by germinants from differentiated Caco-2 Cells, a human cell line mimicking the epithelial cells of the small intestine. Appl Environ Microbiol 73: 50525054.
  • Wijnands LM, Pielaat A, Dufrenne JB, Zwietering MH & van Leusden FM (2009) Modelling the number of viable vegetative cells of Bacillus cereus passing through the stomach. J Appl Microbiol 106: 258267.
  • Williams LD, Burdock GA, Jimenez G & Castillo M (2009) Literature review on the safety of Toyocerin®, a non-toxigenic and non-pathogenic Bacillus cereus var. toyoi preparation. Regul Toxicol Pharmacol 55: 236246.
  • Yang IC, Shih DYC, Huang TP, Huang YP, Wang JY & Pan TM (2005) Establishment of a novel multiplex PCR assay and detection of toxigenic strains of the species in the Bacillus cereus group. J Food Prot 68: 21232130.
  • Yang IC, Shih DY, Wang JY & Pani TM (2007) Development of rapid real-time PCR and most-probable-number real-time PCR assays to quantify enterotoxigenic strains of the species in the Bacillus cereus group. J Food Prot 70: 27742781.
  • Yuan YM, Hu XM, Liu HZ, Hansen BM, Yan JP & Yuan ZM (2007) Kinetics of plasmid transfer among Bacillus cereus group strains within lepidopteran larvae. Arch Microbiol 187: 425431.
  • Zigha A, Rosenfeld E, Schmitt P & Duport C (2007) The redox regulator Fnr is required for fermentative growth and enterotoxin synthesis in Bacillus cereus F4430/73. J Bacteriol 189: 28132824.