SEARCH

SEARCH BY CITATION

References

  • Beeder J, Torsvik T & Lien T (1995) Thermodesulforhabdus norvegicus gen. nov., sp. nov., a novel thermophilic sulfate-reducing bacterium from oil field water. Arch Microbiol 164: 331336.
  • Bogdanova TI, Tsaplina IA, Kondrateva TF, Duda VI, Suzina NE, Melamud VS, Tourova TP & Karavaiko GI (2006) Sulfobacillus thermotolerans sp. nov., a thermotolerant, chemolithotrophic bacterium. Int J Syst Evol Micrbiol 56: 10391042.
  • Bohorquez LC, Delgado-Serrano L, López G, Osorio-Forero C, Klepac-Ceraj V, Kolter R, Junca H, Baena S & Zambrano MM (2012) In-depth characterization via complementing culture-independent approaches of the microbial community in an acidic hot spring of the Colombian Andes. Microb Ecol 63: 103115.
  • Boyd ES, Jackson RA, Encarnacion G, Zahn JA, Beard T, Leavitt WD, Pi Y, Zhang CL, Pearson A & Geesey GG (2007) Isolation, characterization, and ecology of sulfur-respiring Crenarchaea inhabiting acid-sulfate-chloride-containing geothermal springs in Yellowstone National Park. Appl Environ Microbiol 73: 66696677.
  • Boyd ES, Leavitt WD & Geesey GG (2009) CO2 uptake and fixation by a thermoacidophilic microbial community attached to precipitated sulfur in a geothermal spring. Appl Environ Microbiol 75: 42894296.
  • Boyd ES, Hamilton T.L., Spear JR, Lavin M & Peters JW (2010) [FeFe]-hydrogenase in Yellowstone National Park: evidence for dispersal limitation and phylogenetic niche conservation. ISME J 4: 14851495.
  • Boyd ES, Fecteau KM, Havig JR, Shock EL & Peters JW (2012) Modeling the habitat range of phototrophs in Yellowstone National Park: toward the development of a comprehensive fitness landscape. Front Microbiol 3: 221.
  • Brock TD (1973) Lower pH limit for the existence of blue-green algae: evolutionary and ecological implications. Science 179: 480483.
  • Brock TD (1978) Thermophilic Microorganisms and Life at High Temperatures. Springer, Berlin.
  • Brock TD, Brock KM, Belly RT & Weiss RL (1972) Sulfolobus: a new genus of sulfur-oxidizing bacteria living at low pH and high temperature. Arch Microbiol 84: 5468.
  • Cavicchioli R (2002) Extremophiles and the search for extraterrestrial life. Astrobiology 2: 281292.
  • Clingenpeel SR, D'Imperio S, Oduro H, Druschel GK & McDermott TR (2009) Cloning and in situ expression studies of the Hydrogenobaculum arsenite oxidase genes. Appl Environ Microbiol 75: 33623365.
  • Cox A, Shock EL & Havig JR (2011) The transition to microbial photosynthesis in hot spring ecosystems. Chem Geol 280: 344351.
  • Dimabayao JT (2012) Revisiting the volcanic history of Bacman: old and new insights. EDC internal report. Manila, Philippines.
  • D'Imperio S, Lehr CR, Breary M & McDermott TR (2007) Autecology of an arsenite chemolithotroph: sulfide constranits on function and distribution in a geothermal spring. Appl Environ Microbiol 73: 70677074.
  • D'Imperio S, Lehr CR, Oduro H, Druschel G, Kuhl M & McDermott TR (2008) Relative importance of H2 and H2S as energy sources for primary production in geothermal springs. Appl Environ Microbiol 74: 58025808.
  • Dolor FM (2005) Phases of geothermal development in the Philippines. Workshop for Decision Makers on Geothermal Projects and their Management. Naivasha, Kenya, November 14–18.
  • Eberl DD (2003) User's guide to RockJock: a program for determining quantitative mineralogy from powder X-ray diffraction data. USGS Open-File Report 78: 47.
  • Edwards KJ, Bond PL, Gihring TM & Banfield JF (2000) An archaeal iron-oxidizing extreme acidophile important in acid mine drainage. Science 287: 17961799.
  • Ferrera I, Longhorn S, Banta A, Liu Y, Preston D & Reysenbach AL (2007) Diversity of 16S rRNA gene, ITS region and aclB gene of the Aquificales. Extremophiles 11: 5764.
  • Fouke BW, Farmer JD, Des Marais DJ, Pratt L, Sturchio NC, Burns PC & Discipulo MK (2000) Depositional facies and aqueous-solid geochemistry of travertine-depositing hot springs (Angel Terrace, Mammoth hot springs, Yellowstone National Park, U.S.A.). J Sediment Res 70: 565585.
  • Garrity GM & Holt JG (2001) Phylum A1. Crenarchaeota phy. nov. Bergey's Manual of Systematic Bacteriology, 2nd edn (Boone DR & Castenholz RW, eds), pp. 169210. Springer, New York, NY.
  • Gonzalez-Contreras P, Weijma J & Buisman CJ (2012) Kinetics of ferrous iron oxidation by batch and continuous cultures of thermoacidophilic Archaea at extremely low pH of 1.1–1.3. Appl Microbiol Biotechnol 93: 12951303.
  • Hamilton TL, Vogl K, Bryant DA, Boyd ES & Peters JW (2012) Environmental constraints defining the distribution, composition, and evolution of chlorophototrophs in thermal features of Yellowstone National Park. Geobiology 10: 236249.
  • Hou W, Wang S, Dong H et al. (2013) A comprehensive census of microbial diversity in hot springs of Tengchong, Yunnan Province, China using 16S rRNA gene pyrosequencing. PLoS ONE 8: e53350.
  • Huang Q, Dong C, Dong R et al. (2011) Archaeal and bacterial diversity in hot springs on the Tibetan Plateau, China. Extremophiles 15: 549563.
  • Huber H & Prangishvili D (2006) Sulfolobales. The Prokaryotes 3: 2351.
  • Huber R & Stetter KO (2001) Discovery of hyperthermophilic microorganisms. Methods Enzymol 330: 1124.
  • Huber H & Stetter K (2006) Desulfurococcales. The Prokaryotes 3: 5268.
  • Inskeep WP, Ackerman GG, Taylor WP, Kozubal M, Korf S & Macur RE (2005) On the energetics of chemolithotrophy in nonequilibrium systems: case studies of geothermal springs in Yellowstone National Park. Geobiology 3: 297317.
  • Inskeep WP, Rusch DB, Jay ZJ et al. (2010) Metagenomes from high-temperature chemotrophic systems reveal geochemical controls on microbial community structure and function. PLoS ONE 5: 9773.
  • Itoh T, Suzuki K, Sanchez PC & Nakase T (1999) Caldivirga maquilingensis gen. nov., sp. nov., a new genus of rod-shaped crenarchaeote isolated from a hot spring in the Philippines. Int J Syst Bacteriol 49: 11571163.
  • Itoh T, Suzuki K & Nakase T (2002) Vulcanisaeta distributa gen. nov., sp. nov., and Vulcanisaeta souniana sp. nov., novel hyperthermophilic, rod-shaped crenarchaeotes isolated from hot springs in Japan. Int J Syst Evol Micrbiol 52: 10971104.
  • Itoh T, Suzuki K, Sanchez PC & Nakase T (2003) Caldisphaera lagunensis gen. nov., sp. nov., a novel thermoacidophilic crenarchaeote isolated from a hot spring at Mt Maquiling, Philippines. Int J Syst Evol Micrbiol 53: 11491154.
  • Jackson CR, Langner HW, Donahoe-Christiansen J, Inskeep WP & McDermott TR (2001) Molecular analysis of microbial community structure in an arsenite-oxidizing acidic thermal spring. Environ Microbiol 3: 532542.
  • Jeanthon C, L'Haridon S, Cueff V, Banta A, Reysenbach A & Prieur D (2002) Thermodesulfobacterium hydrogeniphilum sp. nov., a thermophilic, chemolithoautotrophic, sulfate-reducing bacterium isolated from a deep-sea hydrothermal vent at Guaymas Basin, and emendation of the genus Thermodesulfobacterium. Int J Syst Evol Micrbiol 52: 765772.
  • Jing H, Aitchison JC, Lacap DC, Peerapornpisal Y, Sompong U & Pointing SB (2005) Community phylogenetic analysis of moderately thermophilic cyanobacterial mats from China, the Philippines and Thailand. Extremophiles 9: 325332.
  • Konhauser KO, Jones B, Reysenbach A & Renaut RW (2003) Hot spring sinters: keys to understanding Earth's earliest life forms. Can J Earth Sci 40: 17131724.
  • Kozubal MA, Macur RE, Jay ZJ, Beam JP, Malfatti SA, Tringe SG, Kocar BD, Borch T & Inskeep WP (2012a) Microbial iron cycling in acidic geothermal springs of Yellowstone National Park: integrating molecular surveys, geochemical processes and isolation of novel Fe-active microorganisms. Front Microbiol 3: 109.
  • Kozubal MA, Romine M, Jennings RD, Jay ZJ, Tringe SG, Rusch DB, Beam JP, McCue LA & Inskeep WP (2012b) Geoarchaeota: a new candidate phylum in the Archaea from high-temperature acidic iron mats in Yellowstone National Park. ISME J 7: 622634.
  • Kvist T, Ahring BK & Westermann P (2007) Archaeal diversity in icelandic hot springs. FEMS Microbiol Ecol 59: 7180.
  • Lacap DC, Smith GJ, Warren-Rhodes K & Pointing SB (2005) Community structure of free-floating filamentous cyanobacterial mats from the Wonder Lake geothermal springs in the Philippines. Can J Microbiol 51: 583589.
  • Lacap DC, Barraquio W & Pointing SB (2007) Thermophilic microbial mats in a tropical geothermal location display pronounced seasonal changes but appear resilient to stochastic disturbance. Environ Microbiol 9: 30653076.
  • Langner HW, Jackson CR, McDermott TR & Inskeep WP (2001) Rapid oxidation of arsenite in a hot spring ecosystem, Yellowstone National Park. Environ Sci Technol 35: 33023309.
  • Lantican N, Diaz M, Cantera J, de los Reyes F & Raymundo A (2011) Microbial community of a volcanic mudspring in the Philippines as revealed by 16S rDNA sequence analysis and fluorescence in situ hybridization. World J Microbiol Biotechnol 27: 859867.
  • Macur RE, Jay ZJ, Taylor WP, Kozubal MA, Kocar BD & Inskeep WP (2013) Microbial community structure and sulfur biogeochemistry in mildly-acidic sulfidic geothermal springs in Yellowstone National Park. Geobiology 11: 8699.
  • Madigan MT & Martinko JH (2006) Prokaryotic diversity: the Archaea. Brock, Biology of Microorganisms, 11th edn (Madigan MT & Martinko JM, eds), pp. 419446. Pearson Education Inc., Pearson Prentice Hall, Upper Saddle River, NJ.
  • Meyer M, Stenzel U & Hofreiter M (2008) Parallel tagged sequencing on the 454 platform. Nat Protoc 3: 267278.
  • Meyer-Dombard DR, Shock EL & Amend JP (2005) Archaeal and bacterial communities in geochemically diverse hot springs of Yellowstone National Park, USA. Geobiology 3: 211227.
  • Mori K, Iino T, Suzuki KI, Yamaguchi K & Kamagata Y (2012) Aceticlastic and NaCl-requiring methanogen “Methanosaeta pelagica” sp. nov., isolated from marine tidal flat sediment. Appl Environ Microbiol 78: 34163423.
  • Norris PR, Clark DA, Owen JP & Waterhouse S (1996) Characteristics of Sulfobacillus acidophilus sp. nov. and other moderately thermophilic mineral-sulphide-oxidizing bacteria. Microbiology 142: 775783.
  • Norris PR, Burton NP & Foulis N (2000) Acidophiles in bioreactor mineral processing. Extremophiles 4: 7176.
  • Nunoura T, Oida H, Miyazaki M & Suzuki Y (2008) Thermosulfidibacter takaii gen. nov., sp. nov., a thermophilic, hydrogen-oxidizing, sulfur-reducing chemolithoautotroph isolated from a deep-sea hydrothermal field in the Southern Okinawa Trough. Int J Syst Evol Micrbiol 58: 659665.
  • Oksanen J, Blanchet FG, Kindt R et al. (2011) Vegan: Community ecology package, http://cran.r-project.org/, http://vegan.r-forge.r-project.org/.
  • Pitulle C, Yang Y, Marchiani M, Moore ERB, Siefert JL, Aragno M, Jurtshuk P & Fox GE (1994) Phylogenetic position of the genus Hydrogenobacter. Int J Syst Bactechnol 44: 620626.
  • R Development Core Team (2012) R: A Language and Environment for Statistical Computing. R Found. for Stat. Comput., Vienna.
  • Reysenbach AL, Banta A, Civello S, Daly J, Mitchel K, Lalonde S, Konhauser K, Rodman A, Rusterholtz K & Takacs-Vesbach C (2005) Aquificales in Yellowstone National Park. Geothermal Biology and Geochemistry in YNP (Inskeep WP & McDermott TR eds), pp. 129142. Montana State Univ Publications, Bozeman, MT.
  • Reysenbach AL, Hamamura N, Podar M et al. (2009) Complete and draft genome sequences of six members of the Aquificales. J Bacteriol 191: 19921993.
  • Rothschild LJ & Mancinelli RL (2001) Life in extreme environments. Nature 409: 10921101.
  • Schloss PD & Westcott SL (2011) Assessing and improving methods used in operational taxonomic unit-based approaches for 16S rRNA gene sequence analysis. Appl Environ Microbiol 77: 32193226.
  • Schloss PD, Westcott SL, Ryabin T et al. (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75: 75377541.
  • Siering PL, Clarke JM & Wilson MS (2006) Geochemical and biological diversity of acidic, hot springs in Lassen Volcanic National Park. Geomicrobiol J 23: 129141.
  • Spear JR, Walker JJ, McCollom TM & Pace NR (2005) Hydrogen and bioenergetics in the Yellowstone geothermal ecosystem. P Natl Acad Sci USA 102: 25552560.
  • Stetter KO (1996) Hyperthermophilic procaryotes. FEMS Microbiol Rev 18: 149158.
  • Stohr R, Waberski A, Volker H, Tindall BJ & Thomm M (2001) Hydrogenothermus marinus gen. nov., sp. nov., a novel thermophilic hydrogen-oxidizing bacterium, recognition of Calderobacterium hydrogenophilum as a member of the genus Hydrogenobacter and proposal of the reclassification of Hydrogenobacter acidophilus as Hydrogenobaculum acidophilum gen. nov., comb. nov., in the phylum ‘Hydrogenobacter/Aquifex. Int J Syst Evol Micrbiol 51: 18531862.
  • Tobler D & Benning L (2011) Bacterial diversity in five Icelandic geothermal waters: temperature and sinter growth rate effects. Extremophiles 15: 473485.
  • Vick TJ, Dodsworth JA, Costa KC, Shock EL & Hedlund BP (2010) Microbiology and geochemistry of Little Hot Creek, a hot spring environment in the Long Valley Caldera. Geobiology 8: 140154.
  • Watling HR, Perrot FA & Shiers DW (2008) Comparison of selected characteristics of Sulfobacillus species and review of their occurrence in acidic and bioleaching environments. Hydrometallurgy 93: 5765.
  • Wilson M, Siering P, White C, Hauser M & Bartles A (2008) Novel Archaea and Bacteria dominate stable microbial communities in North America's largest hot spring. Microb Ecol 56: 292305.